Advertisement

Viral Oncolysis or Virotherapy

  • Milton W. TaylorEmail author
Chapter
  • 2k Downloads

Abstract

The concept of using a virus to “kill” a tumor dates back to the beginning of the 1990’s when it was noticed that occasionally a tumor would shrink following a viral infection. This concept was tested from the 1950s until the 1970s in animal models, and in a few human trials. Success was limited and the practice of viral oncolysis, or “virotherapy,” was met with skepticism. Renewed interest arose following the development of recombinant DNA technology. Recombinant adenovirus and herpesvirus were explored as anticancer agents. Initial efforts to develop their use was delayed due to the death of a patient. New vectors were produced in the 1990s using various viruses, engineered to bind preferentially to tumor cells. Some of these viruses contain transgenes coding for proteins that stimulate the immune system. Within the last few years, clinical trials using various genetically engineered viruses have been initiated. There have not been any toxic side effects, although long-term data are still not available. Preliminary data from a construct of herpes simplex 1 carrying the gene for GCSF shows a positive response against melanoma. A number of biotech companies are now involved in virotherapy; thus, one can conclude that the future of virotherapy as a major tool for the treatment of cancer looks promising.

Keywords

Vaccinia Virus Thymidine Kinase Newcastle Disease Virus Adenovirus Vector Granulocyte Macrophage Colony Stimulate Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dock, G. (1904). The influence of complicating diseases upon leukemia. American Journal of the Medical Sciences, 127, 563–592.CrossRefGoogle Scholar
  2. 2.
    De Pace, N. (1912). Sulla scompara di un enome cancro vegetante del collo dell’ utero senza cura chirugica. Ginecologia, 9, 82–89.Google Scholar
  3. 3.
    Southam, C. M., & Moore, A. E. (1952). Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. Cancer, 5(5), 1025–1034.PubMedCrossRefGoogle Scholar
  4. 4.
    Moore, A. E. (1954). Effects of viruses on tumors. Annual Review of Microbiology, 8, 393–410.PubMedCrossRefGoogle Scholar
  5. 5.
    Webb, H. E., & Smith, C. E. (1970). Viruses in the treatment of cancer. Lancet, 1(7658), 1206–1208.PubMedCrossRefGoogle Scholar
  6. 6.
    Taylor, M. W., Cordell, B., Souhrada, M., & Prather, S. (1971). Viruses as an aid to cancer therapy: Regression of solid and ascites tumors in rodents after treatment with bovine enterovirus. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 836–840.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Sedmak, G. V., Taylor, M. W., Mealey, J, Jr, & Chen, T. T. (1972). Oncolytic effect of bovine enterovirus on mouse and human tumours. Nature New Biology, 238(79), 7–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Miest, T. S., & Cattaneo, R. (2014). New viruses for cancer therapy: Meeting clinical needs. Nature Reviews Microbiology, 12(1), 23–34.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sheridan, C. (2013). Amgen announces oncolytic virus shrinks tumors. Nature Biotechnology, 31(6), 471–472.PubMedCrossRefGoogle Scholar
  10. 10.
    Ganly, I., Kirn, D., Eckhardt, G., Rodriguez, G. I., Soutar, D. S., Otto, R., et al. (2000). A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clinical Cancer Research, 6(3), 798–806.PubMedGoogle Scholar
  11. 11.
    Nemunaitis, J., Khuri, F., Ganly, I., Arseneau, J., Posner, M., Vokes, E., et al. (2001). Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. Journal of Clinical Oncology, 19(2), 289–298.PubMedGoogle Scholar
  12. 12.
    Wang, J., Snider, D. P., Hewlett, B. R., Lukacs, N. W., Gauldie, J., Liang, H., et al. (2000). Transgenic expression of granulocyte-macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung. Blood, 95(7), 2337–2345.PubMedGoogle Scholar
  13. 13.
    Burke, J. M., Lamm, D. L., Meng, M. V., Nemunaitis, J. J., Stephenson, J. J., Arseneau, J. C., et al. (2012). A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. Journal of Urology, 188(6), 2391–2397.PubMedCrossRefGoogle Scholar
  14. 14.
    Kanerva, A., Nokisalmi, P., Diaconu, I., Koski, A., Cerullo, V., Liikanen, I., et al. (2013). Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clinical Cancer Research, 19(10), 2734–2744.PubMedCrossRefGoogle Scholar
  15. 15.
    Cerullo, V. K. A., Vaha-Koskela, M., & Hemminki, A. (2012). Oncolutic adenoviruses for Cancer Immunotherapy: Data from Mice. Hamsters and Humans. Advance Cancer Research, 115, 266–318.Google Scholar
  16. 16.
    MacLean, A. R., ul-Fareed, M., Robertson, L., Harland, J., & Brown, S. M. (1991). Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17 + between immediate early gene 1 and the ‘a’ sequence. Journal General Virology, 72, 631–639.CrossRefGoogle Scholar
  17. 17.
    Robertson, L. M., MacLean, A. R., & Brown, S. M. (1992). Peripheral replication and latency reactivation kinetics of the non-neuneo?Rovirulent herpes simplex virus type 1 variant 1716. Journal of General Virology, 73(Pt 4), 967–970.PubMedCrossRefGoogle Scholar
  18. 18.
    Jia, W. W., McDermott, M., Goldie, J., Cynader, M., Tan, J., & Tufaro, F. (1994). Selective destruction of gliomas in immunocompetent rats by thymidine kinase-defective herpes simplex virus type 1. Journal of the National Cancer Institute, 86(16), 1209–1215.PubMedCrossRefGoogle Scholar
  19. 19.
    Kesari, S., Randazzo, B. P., Valyi-Nagy, T., Huang, Q. S., Brown, S. M., MacLean, A. R., et al. (1995). Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Laboratory Investigation, 73(5), 636–648.PubMedGoogle Scholar
  20. 20.
    Randazzo, B. P., Kesari, S., Gesser, R. M., Alsop, D., Ford, J. C., Brown, S. M., et al. (1995). Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology, 211(1), 94–101.PubMedCrossRefGoogle Scholar
  21. 21.
    Rampling, R., Cruickshank, G., Papanastassiou, V., Nicoll, J., Hadley, D., Brennan, D., et al. (2000). Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy, 7(10), 859–866.PubMedCrossRefGoogle Scholar
  22. 22.
    MacKie, R. M., Stewart, B., & Brown, S. M. (2001). Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet, 357(9255), 525–526.PubMedCrossRefGoogle Scholar
  23. 23.
    Hu, J. C., Coffin, R. S., Davis, C. J., Graham, N. J., Groves, N., Guest, P. J., et al. (2006). A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clinical Cancer Research, 12(22), 6737–6747.PubMedCrossRefGoogle Scholar
  24. 24.
    Nakao, A., Takeda, S., Shimoyama, S., Kasuya, H., Kimata, H., Teshigahara, O., et al. (2007). Clinical experiment of mutant herpes simplex virus HF10 therapy for cancer. Current Cancer Drug Targets, 7(2), 169–174.PubMedCrossRefGoogle Scholar
  25. 25.
    Zeh, H. J., & Bartlett, D. L. (2002). Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Therapy, 9(12), 1001–1012.PubMedCrossRefGoogle Scholar
  26. 26.
    Park, B. H., Hwang, T., Liu, T. C., Sze, D. Y., Kim, J. S., Kwon, H. C., et al. (2008). Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: A phase I trial. The Lancet Oncology, 9(6), 533–542.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang, Y. Q., Tsai, Y. C., Monie, A., Wu, T. C., & Hung, C. F. (2010). Enhancing the therapeutic effect against ovarian cancer through a combination of viral oncolysis and antigen-specific immunotherapy. Molecular Therapy, 18(4), 692–699.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Heo, J., Reid, T., Ruo, L., Breitbach, C. J., Rose, S., Bloomston, M., et al. (2013). Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nature Medicine, 19(3), 329–336.PubMedCrossRefGoogle Scholar
  29. 29.
    Cello, J., Paul, A. V., & Wimmer, E. (2002). Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 297(5583), 1016–1018.PubMedCrossRefGoogle Scholar
  30. 30.
    Goetz, C., Dobrikova, E., Shveygert, M., Dobrikov, M., & Gromeier, M. (2011). Oncolytic poliovirus against malignant glioma. Future Virology, 6(9), 1045–1058.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Sinkovics, J. G., & Horvath, J. C. (2000). Newcastle disease virus (NDV): Brief history of its oncolytic strains. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 16(1), 1–15.CrossRefGoogle Scholar
  32. 32.
    Thirukkumaran, C., & Morris, D. G. (2009). Oncolytic viral therapy using reovirus. Methods Mol Biol, 542, 607–634.PubMedCrossRefGoogle Scholar
  33. 33.
    Thirukkumaran, C. M., Shi, Z. Q., Luider, J., Kopciuk, K., Gao, H., Bahlis, N., et al. (2013). Reovirus modulates autophagy during oncolysis of multiple myeloma. Autophagy, 9(3), 413–414.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Jennings, V. A., Ilett, E. J., Scott, K. J., West, E. J., Vile, R., Pandha, H., et al. (2014). Lymphokine-activated killer and dendritic cell carriage enhances oncolytic reovirus therapy for ovarian cancer by overcoming antibody neutralization in ascites. International Journal of Cancer, 134(5), 1091–1101.CrossRefGoogle Scholar
  35. 35.
    Chen, Y. Q., de Foresta, F., Hertoghs, J., Avalosse, B. L., Cornelis, J. J., & Rommelaere, J. (1986). Selective killing of simian virus 40-transformed human fibroblasts by parvovirus H-1. Cancer Research, 46(7), 3574–3579.PubMedGoogle Scholar
  36. 36.
    Shi, Z. Y., Ma, C. W., Huang, J., Lin, W. M., Dong, R. C., & Luo, Z. Y. (1997). Inhibition of parvovirus H-1 on transplantable human hepatoma and its histological and histobiochemical studies. Shi Yan Sheng Wu Xue Bao, 30(3), 247–259.PubMedGoogle Scholar
  37. 37.
    Shadan, F. F., & Villarreal, L. P. (2000). Parvovirus-mediated antineoplastic activity exploits genome instability. Medical Hypotheses, 55(1), 1–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Perez, O. D., Logg, C. R., Hiraoka, K., Diago, O., Burnett, R., Inagaki, A., et al. (2012). Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Molecular Therapy, 20(9), 1689–1698.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Huang, T. T., Hlavaty, J., Ostertag, D., Espinoza, F. L., Martin, B., Petznek, H., et al. (2013). Toca 511 gene transfer and 5-fluorocytosine in combination with temozolomide demonstrates synergistic therapeutic efficacy in a temozolomide-sensitive glioblastoma model. Cancer Gene Therapy, 20(10), 544–551.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Indiana UniversityBloomingtonUSA

Personalised recommendations