Skip to main content

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 90))

  • 826 Accesses

Abstract

In the many decades of investigation into the regulation of gene transcription in vertebrates, the locus control region (LCR) has emerged as perhaps the most powerful cis-acting regulatory DNA element that one can envision. An LCR element is unique in that it supports both specific spatiotemporal regulation of transcription during development, and a poorly understood “insulation capacity” that prevents genomic interference with the gene regulatory program it would impose upon a linked transgene. As such, it represents a complete, compact and portable package of the DNA sequence information required to establish an independently and predictably regulated gene locus in native chromatin of a whole animal. Both in vivo and cell culture models have contributed significantly to building the field of LCRs. Nevertheless, the gold standard experimental approach to LCR study is transgenic mice, which has been dominant in the progress made in the field over the past 25 years. However, recent technological advances are resulting in a re-emergence of cell culture based approaches to LCR study, portending a coming era of more rapid progress in this significant but understudied field. The investigation of the unique and powerful gene regulatory activities supported by LCR elements offers unparalleled opportunities to gain insight into cis-mediated transcriptional regulation at the single gene locus level. Furthermore, such insights are critical to advancing the safety and efficacy of gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barkess, G., & West, A. G. (2012). Chromatin insulator elements: Establishing barriers to set heterochromatin boundaries. Epigenomics, 4(1), 67–80. doi:10.2217/epi.11.112.

    Article  Google Scholar 

  2. Bender, M. A., Bulger, M., Close, J., & Groudine, M. (2000). Beta-globin gene switching and DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region. Molecular Cell, 5(2), 387–393.

    Article  Google Scholar 

  3. Blom van Assendelft, G., Hanscombe, O., Grosveld, F., & Greaves, D. R. (1989). The beta-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell, 56(6), 969–977.

    Article  Google Scholar 

  4. Bottardi, S., Aumont, A., Grosveld, F., & Milot, E. (2003). Developmental stage-specific epigenetic control of human beta-globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation. Blood, 102(12), 3989–3997. doi:10.1182/blood-2003-05-1540 2003-05-1540 [pii].

    Article  Google Scholar 

  5. Bottardi, S., Ross, J., Pierre-Charles, N., Blank, V., & Milot, E. (2006). Lineage-specific activators affect beta-globin locus chromatin in multipotent hematopoietic progenitors. EMBO Journal, 25(15), 3586–3595. doi:10.1038/sj.emboj.7601232. 7601232 [pii].

    Article  Google Scholar 

  6. Bulger, M., & Groudine, M. (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell, 144(3), 327–339. doi:10.1016/j.cell.2011.01.024. S0092-8674(11)00063-8 [pii].

    Article  Google Scholar 

  7. Cho, S. K., Webber, T. D., Carlyle, J. R., Nakano, T., Lewis, S. M., & Zuniga-Pflucker, J. C. (1999). Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9797–9802.

    Article  Google Scholar 

  8. Chung, J. H., Whiteley, M., & Felsenfeld, G. (1993). A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell, 74(3), 505–514.

    Article  Google Scholar 

  9. Crabtree, G. R. (1989). Contingent genetic regulatory events in T lymphocyte activation. Science, 243(4889), 355–361.

    Article  Google Scholar 

  10. Diaz, P., Cado, D., & Winoto, A. (1994). A locus control region in the T cell receptor alpha/delta locus. Immunity, 1(3), 207–217.

    Article  Google Scholar 

  11. Dickson, J., Gowher, H., Strogantsev, R., Gaszner, M., Hair, A., Felsenfeld, G., et al. (2010). VEZF1 elements mediate protection from DNA methylation. PLoS Genetics, 6(1), e1000804. doi:10.1371/journal.pgen.1000804.

    Article  Google Scholar 

  12. Elefant, F., Su, Y., Liebhaber, S. A., & Cooke, N. E. (2000). Patterns of histone acetylation suggest dual pathways for gene activation by a bifunctional locus control region. EMBO Journal, 19(24), 6814–6822. doi:10.1093/emboj/19.24.6814.

    Article  Google Scholar 

  13. Ellis, J., Tan-Un, K. C., Harper, A., Michalovich, D., Yannoutsos, N., Philipsen, S., et al. (1996). A dominant chromatin-opening activity in 5′ hypersensitive site 3 of the human beta-globin locus control region. EMBO Journal, 15(3), 562–568.

    Google Scholar 

  14. Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., et al. (1996). Locus control region function and heterochromatin-induced position effect variegation. Science, 271(5252), 1123–1125.

    Article  Google Scholar 

  15. Forrester, W. C., Takegawa, S., Papayannopoulou, T., Stamatoyannopoulos, G., & Groudine, M. (1987). Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Research, 15(24), 10159–10177.

    Article  Google Scholar 

  16. Forrester, W. C., Thompson, C., Elder, J. T., & Groudine, M. (1986). A developmentally stable chromatin structure in the human beta-globin gene cluster. Proceedings of the National Academy of Sciences of the United States of America, 83(5), 1359–1363.

    Article  Google Scholar 

  17. Fraser, P., & Grosveld, F. (1998). Locus control regions, chromatin activation and transcription. Current Opinion in Cell Biology, 10(3), 361–365.

    Article  Google Scholar 

  18. Fuchs, E., & Segre, J. A. (2000). Stem cells: A new lease on life. Cell, 100(1), 143–155. S0092-8674(00)81691-8 [pii].

    Article  Google Scholar 

  19. Gaszner, M., & Felsenfeld, G. (2006). Insulators: Exploiting transcriptional and epigenetic mechanisms. Nature Reviews Genetics, 7(9), 703–713.

    Article  Google Scholar 

  20. Germain, R. N. (2002). T-cell development and the CD4–CD8 lineage decision. Nature Reviews Immunology, 2(5), 309–322. doi:10.1038/nri798.

    Article  MathSciNet  Google Scholar 

  21. Gomos-Klein, J., Harrow, F., Alarcón, J., & Ortiz, B. D. (2007). CTCF-independent, but not CTCF-dependent, elements significantly contribute to TCRa locus control region activity. Journal of Immunology, 179(2), 1088–1095.

    Article  Google Scholar 

  22. Greaves, D. R., Wilson, F. D., Lang, G., & Kioussis, D. (1989). Human CD2 3′-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell, 56(6), 979–986.

    Article  Google Scholar 

  23. Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R., & Fraser, P. (2000). Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Molecular Cell, 5(2), 377–386.

    Article  Google Scholar 

  24. Grosveld, F., van Assendelft, G. B., Greaves, D. R., & Kollias, G. (1987). Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell, 51(6), 975–985.

    Article  Google Scholar 

  25. Groudine, M., Kohwi-Shigematsu, T., Gelinas, R., Stamatoyannopoulos, G., & Papayannopoulou, T. (1983). Human fetal to adult hemoglobin switching: changes in chromatin structure of the beta-globin gene locus. Proceedings of the National Academy of Sciences of the United States of America, 80(24), 7551–7555.

    Article  Google Scholar 

  26. Harrow, F., Amuta, J. U., Hutchinson, S. R., Akwaa, F., & Ortiz, B. D. (2004). Factors binding a non-classical Cis-element prevent heterochromatin effects on locus control region activity. Journal of Biological Chemistry, 279(17), 17842–17849.

    Article  Google Scholar 

  27. Harrow, F., & Ortiz, B. D. (2005). The TCRalpha locus control region specifies thymic, but not peripheral, patterns of TCRalpha gene expression. Journal of Immunology, 175(10), 6659–6667.

    Article  Google Scholar 

  28. Hong, N. A., Cado, D., Mitchell, J., Ortiz, B. D., Hsieh, S. N., & Winoto, A. (1997). A targeted mutation at the T-cell receptor alpha/delta locus impairs T-cell development and reveals the presence of the nearby antiapoptosis gene Dad1. Molecular Cell. Biology, 17(4), 2151–2157.

    Google Scholar 

  29. Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.

    Article  Google Scholar 

  30. Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K. J., et al. (1994). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature, 369(6475), 31–37. doi:10.1038/369031a0.

    Article  Google Scholar 

  31. Kennedy, M., Awong, G., Sturgeon, C. M., Ditadi, A., LaMotte-Mohs, R., Zuniga-Pflucker, J. C., et al. (2013). T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Reports, 2(6), 1722–1735. doi:10.1016/j.celrep.2012.11.003. S2211-1247(12)00384-1 [pii].

    Article  Google Scholar 

  32. Kioussis, D., Vanin, E., deLange, T., Flavell, R. A., & Grosveld, F. G. (1983). Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature, 306(5944), 662–666.

    Article  Google Scholar 

  33. Knirr, S., Gomos-Klein, J., Andino, B. E., Harrow, F., Erhard, K. F., Kovalovsky, D., et al. (2010). Ectopic T cell receptor-alpha locus control region activity in B cells is suppressed by direct linkage to two flanking genes at once. PLoS One, 5(11), e15527. doi:10.1371/journal.pone.0015527.

    Article  Google Scholar 

  34. Krensky, A. M., Weiss, A., Crabtree, G., Davis, M. M., & Parham, P. (1990). T-lymphocyte-antigen interactions in transplant rejection. New England Journal of Medicine, 322(8), 510–517. doi:10.1056/NEJM199002223220805.

    Article  Google Scholar 

  35. Lahiji, A., Kucerova-Levisohn, M., Lovett, J., Holmes, R., Zuniga-Pflucker, J. C., & Ortiz, B. D. (2013). Complete TCR-alpha gene locus control region activity in T cells derived in vitro from embryonic stem cells. Journal of Immunology, 191(1), 472–479. doi:10.4049/jimmunol.1300521. jimmunol.1300521 [pii].

    Article  Google Scholar 

  36. Lang, G., Wotton, D., Owen, M. J., Sewell, W. A., Brown, M. H., Mason, D. Y., et al. (1988). The structure of the human CD2 gene and its expression in transgenic mice. EMBO Journal, 7(6), 1675–1682.

    Google Scholar 

  37. Li, Q., Harju, S., & Peterson, K. R. (1999). Locus control regions: Coming of age at a decade plus. Trends in Genetics, 15(10), 403–408.

    Article  Google Scholar 

  38. Li, Q., Peterson, K. R., Fang, X., & Stamatoyannopoulos, G. (2002). Locus control regions. Blood, 100, 3077–3086.

    Article  Google Scholar 

  39. Magdinier, F., Yusufzai, T. M., & Felsenfeld, G. (2004). Both CTCF-dependent and -independent insulators are found between the mouse T cell receptor alpha and Dad1 genes. Journal of Biological Chemistry, 279(24), 25381–25389.

    Article  Google Scholar 

  40. Magram, J., Chada, K., & Costantini, F. (1985). Developmental regulation of a cloned adult beta-globin gene in transgenic mice. Nature, 315(6017), 338–340.

    Article  Google Scholar 

  41. May, C., Rivella, S., Callegari, J., Heller, G., Gaensler, K. M., Luzzatto, L., et al. (2000). Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature, 406(6791), 82–86. doi:10.1038/35017565.

    Article  Google Scholar 

  42. Milot, E., Strouboulis, J., Trimborn, T., Wijgerde, M., de Boer, E., Langeveld, A., et al. (1996). Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell, 87(1), 105–114.

    Article  Google Scholar 

  43. Nakano, T., Kodama, H., & Honjo, T. (1994). Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science, 265(5175), 1098–1101.

    Article  Google Scholar 

  44. Ortiz, B. D., Cado, D., Chen, V., Diaz, P. W., & Winoto, A. (1997). Adjacent DNA elements dominantly restrict the ubiquitous activity of a novel chromatin-opening region to specific tissues. EMBO Journal, 16(16), 5037–5045.

    Article  Google Scholar 

  45. Ortiz, B. D., Cado, D., & Winoto, A. (1999). A new element within the T-cell receptor alpha locus required for tissue-specific locus control region activity. Molecular Cell Biology, 19(3), 1901–1909.

    Google Scholar 

  46. Ortiz, B. D., Harrow, F., Cado, D., Santoso, B., & Winoto, A. (2001). Function and factor interactions of a locus control region element in the mouse T cell receptor-alpha/Dad1 gene locus. Journal of Immunology, 167(7), 3836–3845.

    Article  Google Scholar 

  47. Ortiz, B. D., Nelson, P. J., & Krensky, A. M. (1997). Switching gears during T-cell maturation: RANTES and late transcription. Immunology Today, 18(10), 468–471.

    Article  Google Scholar 

  48. Palmiter, R. D., & Brinster, R. L. (1986). Germ-line transformation of mice. Annual Review of Genetics, 20, 465–499.

    Article  Google Scholar 

  49. Pipkin, M. E., Ljutic, B., Cruz-Guilloty, F., Nouzova, M., Rao, A., Zuniga-Pflucker, J. C., et al. (2007). Chromosome transfer activates and delineates a locus control region for perforin. Immunity, 26(1), 29–41.

    Article  Google Scholar 

  50. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., & June, C. H. (2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. New England Journal of Medicine, 365(8), 725–733. doi:10.1056/NEJMoa1103849.

    Article  Google Scholar 

  51. Pui, J. C., Allman, D., Xu, L., DeRocco, S., Karnell, F. G., Bakkour, S., et al. (1999). Notch1 expression in early lymphopoiesis influences B versus T lineage determination [In Process Citation]. Immunity, 11(3), 299–308.

    Article  Google Scholar 

  52. Recillas-Targa, F., Pikaart, M. J., Burgess-Beusse, B., Bell, A. C., Litt, M. D., West, A. G., et al. (2002). Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proceedings of the National Academy of Sciences of the United States of America, 99, 6883–6888.

    Article  Google Scholar 

  53. Reik, A., Telling, A., Zitnik, G., Cimbora, D., Epner, E., & Groudine, M. (1998). The locus control region is necessary for gene expression in the human beta-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Molecular Cell Biology, 18(10), 5992–6000.

    Google Scholar 

  54. Santoso, B., Ortiz, B. D., & Winoto, A. (2000). Control of organ specific demethylation by an element of the T-cell receptor alpha locus control region. Journal of Biological Chemistry, 275, 1952–1958.

    Article  Google Scholar 

  55. Schmitt, T. M., de Pooter, R. F., Gronski, M. A., Cho, S. K., Ohashi, P. S., & Zuniga-Pflucker, J. C. (2004). Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nature Immunology, 5(4), 410–417. doi: 10.1038/ni1055 ni1055 [pii].

    Article  Google Scholar 

  56. Schmitt, T. M., & Zuniga-Pflucker, J. C. (2002). Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity, 17(6), 749–756. doi:S1074761302004740 [pii].

    Article  Google Scholar 

  57. Skarpidi, E., Vassilopoulos, G., Stamatoyannopoulos, G., & Li, Q. (1998). Comparison of expression of human globin genes transferred into mouse erythroleukemia cells and in transgenic mice. Blood, 92(9), 3416–3421.

    Google Scholar 

  58. Takegawa, S., Brice, M., Stamatoyannopoulos, G., & Papayannopoulou, T. (1986). Only adult hemoglobin is produced in fetal nonerythroid x MEL cell hybrids. Blood, 68(6), 1384–1388.

    Google Scholar 

  59. Thomas, C. E., Ehrhardt, A., & Kay, M. A. (2003). Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics, 4, 346–358.

    Article  Google Scholar 

  60. Townes, T. M., Lingrel, J. B., Chen, H. Y., Brinster, R. L., & Palmiter, R. D. (1985). Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO Journal, 4(7), 1715–1723.

    Google Scholar 

  61. Tuan, D., Solomon, W., Li, Q., & London, I. M. (1985). The “beta-like-globin” gene domain in human erythroid cells. Proceedings of the National Academy of Sciences of the United States of America, 82(19), 6384–6388.

    Article  Google Scholar 

  62. Vassilopoulos, G., Navas, P. A., Skarpidi, E., Peterson, K. R., Lowrey, C. H., Papayannopoulou, T., et al. (1999). Correct function of the locus control region may require passage through a nonerythroid cellular environment. Blood, 93(2), 703–712.

    Google Scholar 

  63. Vieira, K. F., Levings, P. P., Hill, M. A., Crusselle, V. J., Kang, S. H., Engel, J. D., et al. (2004). Recruitment of transcription complexes to the beta-globin gene locus in vivo and in vitro. Journal of Biological Chemistry, 279(48), 50350–50357. doi:10.1074/jbc.M408883200. M408883200 [pii].

    Article  Google Scholar 

  64. West, A. G., Huang, S., Gaszner, M., Litt, M. D., & Felsenfeld, G. (2004). Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Molecular Cell, 16(3), 453–463.

    Article  Google Scholar 

  65. Zhong, X. P., & Krangel, M. S. (1999). Enhancer-blocking activity within the DNase I hypersensitive site 2 to 6 region between the TCR alpha and Dad1 genes. Journal of Immunology, 163(1), 295–300.

    Google Scholar 

Download references

Acknowledgments

The author thanks D. Loayza, J. Lovett, M. Kučerová-Levisohn and G.D. Raghupathy for helpful comments on the manuscript and A. Lahiji for the digital artwork in Figs. 1 and 2. Research in the author’s laboratory is funded by National Institutes of Health (NIH) grant SC1-GM095402. The research infrastructure of Hunter College is supported in part by NIH grant MD007599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ortiz, B.D. (2014). Recent Advances in Approaches to the Study of Gene Locus Control Regions. In: Toni, B. (eds) New Frontiers of Multidisciplinary Research in STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health). Springer Proceedings in Mathematics & Statistics, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-07755-0_9

Download citation

Publish with us

Policies and ethics