Skip to main content

Introduction

  • Chapter
  • First Online:
Relativistic Electron Mirrors

Part of the book series: Springer Theses ((Springer Theses))

  • 614 Accesses

Abstract

Soon after the first demonstration of the laser [1], the quest for a coherent light source at even shorter wavelengths emerged. Nowadays, intense, brilliant X-ray beams are obtained from large-scale synchrotrons and have become an indispensable tool in many areas of science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187(4736):493–494

    Article  ADS  Google Scholar 

  2. Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker FJ, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering Ph, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn HD, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, Galayda J (2010) First lasing and operation of an angstrom-wavelength free-electron laser. Nat Photonics 4(9):641–647

    Article  ADS  Google Scholar 

  3. W. Ackermann and Others (2007) Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat Photonics, 1(6):336–342

    Google Scholar 

  4. Landecker K (1952) Possibility of frequency multiplication and wave amplification by means of some relativistic effects. Phys Rev 86:852–855

    Article  ADS  Google Scholar 

  5. Milburn Richard H (1963) Electron scattering by an intense polarized photon field. Phys Rev Lett 10:75–77

    Article  ADS  Google Scholar 

  6. Arutyunian FR (1963) The compton effect on relativistic electrons and the possibility of obtaining high energy beams. Phys Lett 4:176–178

    Article  ADS  Google Scholar 

  7. Schoenlein RW, Leemans WP, Chin AH, Volfbeyn P, Glover TE, Balling P, Zolotorev M, Kim KJ, Chattopadhyay S, Shank CV (1996) Femtosecond x-ray pulses at 0.4 A generated by 90\(\,^{\circ }\) thomson scattering: a tool for probing the structural dynamics of materials. Science 274(5285):236–238

    Article  ADS  Google Scholar 

  8. Schwoerer H, Liesfeld B, Schlenvoigt H-P, Amthor K-U, Sauerbrey R (2006) Thomson-backscattered x rays from laser-accelerated electrons. Phys Rev Lett 96(1):014802

    Article  ADS  Google Scholar 

  9. Hartemann FV, Gibson DJ, Brown WJ, Rousse A, Ta Phuoc K, Mallka V, Faure J, Pukhov A (2007). Compton scattering x-ray sources driven by laser wakefield acceleration. Phys Rev ST Accel Beams 10:011301

    Google Scholar 

  10. Zhirong Huang, Ruth Ronald D (1998) Laser-electron storage ring. Phys Rev Lett 80:976–979

    Article  Google Scholar 

  11. Brown WJ, Anderson SG, Barty CPJ, Betts SM, Booth R, Crane JK, Cross RR, Fittinghoff DN, Gibson DJ, Hartemann FV, Hartouni EP, Kuba J, Le Sage GP, Slaughter DR, Tremaine AM, Wootton AJ, Springer PT, Rosenzweig JB (2004) Experimental characterization of an ultrafast thomson scattering x-ray source with three-dimensional time and frequency-domain analysis. Phys Rev ST Accel Beams 7:060702

    Article  ADS  Google Scholar 

  12. Albert F, Anderson SG, Anderson GA, Betts SM, Gibson DJ, Hagmann CA, Hall J, Johnson MS, Messerly MJ, Semenov VA, Shverdin MY, Tremaine AM, Hartemann FV, Siders CW, McNabb DP, Barty CPJ (2010) Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays. Opt Lett 35(3):354–356

    Article  ADS  Google Scholar 

  13. Einstein A (2005) Zur Elektrodynamik bewegter Körper [AdP 17, 891 (1905)]. Ann Phys 14(S1):194–224

    Google Scholar 

  14. Dromey B, Zepf M, Gopal A, Lancaster K, Wei MS, Krushelnick K, Tatarakis M, Vakakis N, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P (2006) High harmonic generation in the relativistic limit. Nat Phys 2(7):456–459

    Article  Google Scholar 

  15. Dromey B, Kar S, Bellei C, Carroll DC, Clarke RJ, Green JS, Kneip S, Markey K, Nagel SR, Simpson PT, Willingale L, McKenna P, Neely D, Najmudin Z, Krushelnick K, Norreys PA, Zepf M (2007) Bright multi-kev harmonic generation from relativistically oscillating plasma surfaces. Phys Rev Lett 99(8):085001

    Article  ADS  Google Scholar 

  16. Baeva T, Gordienko S, Pukhov A (2006) Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys Rev E 74:046404

    Article  ADS  Google Scholar 

  17. Bulanov Sergei V, Timur Esirkepov, Toshiki Tajima (2003) Light intensification towards the schwinger limit. Phys Rev Lett 91(8):085001

    Article  ADS  Google Scholar 

  18. Kando M, Fukuda Y, Pirozhkov AS, Ma J, Daito I, Chen L-M, Esirkepov TZh, Ogura K, Homma T, Hayashi Y, Kotaki H, Sagisaka A, Mori M, Koga JK, Daido H, Bulanov SV, Kimura T, Kato Y, Tajima T (2007) Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. Phys Rev Lett 99(13):135001

    Article  ADS  Google Scholar 

  19. Kando M, Pirozhkov AS, Kawase K, Esirkepov TZh, Fukuda Y, Kiriyama H, Okada H, Daito I, Kameshima T, Hayashi Y, Kotaki H, Mori M, Koga JK, Daido H, Faenov AY, Pikuz T, Ma J, Chen LM, Ragozin EN, Kawachi T, Kato Y, Tajima T, Bulanov SV (2009) Enhancement of photon number reflected by the relativistic flying mirror. Phys Rev Lett 103(23):235003

    Google Scholar 

  20. Kulagin VV, Cherepenin VA, Hur MS, Suk H (2007). Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm. Phys Rev Lett 99(12):124801

    Google Scholar 

  21. Meyer-ter Vehn J, Wu HC (2009) Coherent thomson backscattering from laser-driven relativistic ultra-thin electron layers. Eur Phys J D 55:433–441

    Google Scholar 

  22. Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M (2009) Coherent x-ray production via pulse reflection from laser-driven dense electron sheets. New J Phys 11(10):103042 (11pp)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kiefer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kiefer, D. (2015). Introduction. In: Relativistic Electron Mirrors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07752-9_1

Download citation

Publish with us

Policies and ethics