Skip to main content

Permanent Supracolloidal Biparticle Assembly Triggered by an Electric Field

  • Chapter
  • First Online:
Adsorption, Aggregation and Structure Formation in Systems of Charged Particles

Part of the book series: Springer Theses ((Springer Theses))

  • 749 Accesses

Abstract

The colloidal assembly is a major route to making materials with tailored functionality resulting from the organization of the particles. While much attention has been focused on colloidal crystals with potential photonics applications, permanently bound linear structures are a somewhat overlooked material with a broad range of applications. For example, linear arrays of magnetic nanoparticles can be used as flexible whereas linear chains of polystyrene nanoparticles in polymer solution can cause interesting viscosity anomalies.

Modified from the article: Bharti, B., Findenegg, G. H., Velev, O. D., Sci. Rep., 2012, 2, 1004. Copyright 2012 Nature Publishing Group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velev OD, Gupta S (2009) Materials fabricated by micro‐ and nanoparticle assembly—The challenging path from science to engineering. Adv Mater 21:1897

    Article  CAS  Google Scholar 

  2. Tang Z, Kotov NA (2005) One‐dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv Mater 17:951

    Article  CAS  Google Scholar 

  3. Li F, Josephson DP, Stein A (2011) Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew Chem Int Ed 50:360

    Article  CAS  Google Scholar 

  4. Yethiraj A, Thijssen JHJ, Wouterse A, Blaaderen AV (2004) Large‐area electric‐field‐induced colloidal single crystals for photonic applications. Adv Mater 16:596

    Article  CAS  Google Scholar 

  5. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862

    Article  CAS  Google Scholar 

  6. Mackay ME, Dao TT, Tuteja A, Ho DL, Horn BV, Kim HC, Hawker CJ (2003) Molecular architecture and rheological characterization of novel intramolecularly crosslinked polystyrene nanoparticles. Nat Mater 2:762

    Article  CAS  Google Scholar 

  7. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617

    Article  CAS  Google Scholar 

  8. Thelander C, Martensson T, Björk MT, Ohisson BJ, Larsson MW, Wallenberg LR, Samuelson L (2003) Single-electron transistors in heterostructure nanowires. Appl Phys Lett 83:2052

    Article  CAS  Google Scholar 

  9. Terray A, Oakey J, Marr DWM (2002) Single-electron transistors in heterostructure nanowires. Appl Phys Lett 81:1555

    Article  CAS  Google Scholar 

  10. Sharma KP, Kumaraswamy G, Ly I, Mondain-Monval O (2009) Self-assembly of silica particles in a nonionic surfactant hexagonal mesophase. J Phys Chem B 113:3423

    Article  CAS  Google Scholar 

  11. Grzybowski BA, Stone HA, Whitesides GM (2000) Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405:1033

    Article  CAS  Google Scholar 

  12. Zerrouki D, Baudry J, Pine D, Chaikin P, Bibette J (2008) Chiral colloidal clusters. Nature 455:380

    Article  CAS  Google Scholar 

  13. Gangwal S, Cayre OJ, Velev OD (2008) Dielectrophoretic assembly of metallo dielectric Janus particles in AC electric fields. Langmuir 24:13312

    Article  CAS  Google Scholar 

  14. Piech M, George MC, Bell NS, Braun PV (2006) Patterned colloid assembly by grafted photochromic polymer layers. Langmuir 22:1379

    Article  CAS  Google Scholar 

  15. Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Techaumnat B, Eua-arporn B, Takuma T (2004) Calculation of electric field and dielectrophoretic force on spherical particles in chain. J Phys D Appl Phys 37:3337

    Article  CAS  Google Scholar 

  17. Velev OD, Bhatt KH (2006) On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738

    Article  CAS  Google Scholar 

  18. Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD (2001) Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294:1082

    Article  Google Scholar 

  19. Lumsdon SO, Kaler EW, Velev OD (2004) Two-dimensional crystallization of microspheres by a coplanar AC electric field. Langmuir 20:2018

    Article  Google Scholar 

  20. Gupta S, Alargova RG, Kilpatrick PK, Velev OD (2010) On-chip dielectrophoretic coassembly of live cells and particles into responsive biomaterials. Langmuir 26:3441

    Article  CAS  Google Scholar 

  21. Leunissen ME, Christova CG, Hynnien AP, Royall CP, Campbell AI, Imhof A, Dijkstra M, Roij Rv, Blaaderen AV (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437:235

    Article  CAS  Google Scholar 

  22. Vutukuri HR, Stiefelhagen J, Vissers T, Imhof A, Blaaderen AV (2012) Bonding assembled colloids without loss of colloidal stability. Adv Mater 24:412

    Article  CAS  Google Scholar 

  23. Bharti B, Meissner J, Findenegg GH (2011) Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir 27:9823

    Article  CAS  Google Scholar 

  24. Lin W, Kobayashi M, Skarba M, Changdao M, Galleto P, Borkovec M (2006) Heteroaggregation in binary mixtures of oppositely charged colloidal particles. Langmuir 22:1038

    Article  CAS  Google Scholar 

  25. Stoy RD (1994) Interactive dipole model for two-sphere system. J Electrostat 33:385

    Article  Google Scholar 

  26. Gupta S, Alargova RG, Kilpatrick PK, Velev OD (2008) On-chip electric field driven assembly of biocomposites from live cells and functionalized particles. Soft Matter 4:726

    Article  CAS  Google Scholar 

  27. Vissers T, Blaaderen AV, Imhof A (2011) Band formation in mixtures of oppositely charged colloids driven by an AC electric field. Phys Rev Lett 106:228303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvnesh Bharti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bharti, B. (2014). Permanent Supracolloidal Biparticle Assembly Triggered by an Electric Field. In: Adsorption, Aggregation and Structure Formation in Systems of Charged Particles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07737-6_9

Download citation

Publish with us

Policies and ethics