Skip to main content

Protein-Specific Effects of Binding to Silica Nanoparticles

  • Chapter
  • First Online:
Adsorption, Aggregation and Structure Formation in Systems of Charged Particles

Part of the book series: Springer Theses ((Springer Theses))

  • 763 Accesses

Abstract

In the past decades, promising new applications of nanoscience in the biomedical field have emerged, including drug delivery, imaging and biosensing. Since a wide variety of materials have been considered for such applications, a basic understanding of their interactions with biomolecules is imperative. The interaction of proteins with hydrophobic or hydrophilic surfaces has been studied extensively in the past and giving evidence of the complexity of the phenomena involved.

Modified from the article: Bharti, B., Findenegg, G. H., Chem. Lett., 2012, 41, 1122. Copyright 2012 The Chemical Society of Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16

    Article  CAS  Google Scholar 

  2. Asuri P, Bale BSS, Karajanagi SS, Kane RS (2006) The protein–nanomaterial interface. Curr Opin Biotechnol 17:562

    Article  CAS  Google Scholar 

  3. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nanotoday 3:40

    Article  CAS  Google Scholar 

  4. Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA 104:2029

    Article  CAS  Google Scholar 

  5. Li N, Zeng S, He L, Zhong W (2010) Probing nanoparticle-protein interaction by capillary electrophoresis. Anal Chem 82:7460

    Article  CAS  Google Scholar 

  6. Parmar AS, Muschol M (2009) Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions. Biophys J 97:590

    Article  CAS  Google Scholar 

  7. Morar AS, Olteanu A, Young GB, Pielak GJ (2001) Solvent‐induced collapse of α‐synuclein and acid‐denatured cytochrome c. Protein Sci 10:2195

    Article  CAS  Google Scholar 

  8. Takashima S (2002) Electric dipole moments of globular proteins: measurement and calculation with NMR and X-ray databases. J Non-Cryst Solids 305:303

    Article  CAS  Google Scholar 

  9. Posse E, Vitals AL, de Arcuri BF, Farias RN, Morero RD (1990) Lysozyme induced fusion of negatively charged phospholipid vesicles. Biochim Biophys Acta 1024:390

    Article  CAS  Google Scholar 

  10. http://bioinfo.weizmann.ac.il/dipol/

  11. McNicholas S, Potterton E, Wilson KS, Noble MEM (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Cryst D67:386

    Google Scholar 

  12. Davis TM, Snyder MA, Krohn JE, Tsapatsis M (2006) Nanoparticles in lysine-silica sols. Chem Mater 18:5814

    Article  CAS  Google Scholar 

  13. Bharti B, Meissner J, Gasser U, Findenegg GH (2012) Surfactant adsorption and aggregate structure at silica nanoparticles: effects of particle size and surface modification. Soft Matter 8:2573

    Article  Google Scholar 

  14. Bharti B, Meissner J, Findenegg GH (2011) Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir 27:9823

    Article  CAS  Google Scholar 

  15. Muratov A, Moussaid A, Narayanan T, Kats EI (2009) A Percus–Yevick description of the microstructure of short-range interacting metastable colloidal suspensions. J Chem Phys 131:054902

    Article  CAS  Google Scholar 

  16. Parneix C, Persello J, Schweins R, Cabane B (2009) How do colloidal aggregates yield to compressive stress? Langmuir 25:4692

    Article  CAS  Google Scholar 

  17. Baxter RJ (1968) Percus–Yevick equation for hard spheres with surface adhesion. J Chem Phys 49:2770

    Article  CAS  Google Scholar 

  18. Regnaut C, Ravey JC (1989) Application of the adhesive sphere model to the structure of colloidal suspensions. J Chem Phys 91:1211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvnesh Bharti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bharti, B. (2014). Protein-Specific Effects of Binding to Silica Nanoparticles. In: Adsorption, Aggregation and Structure Formation in Systems of Charged Particles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07737-6_8

Download citation

Publish with us

Policies and ethics