Skip to main content

Theory and Modeling

  • Chapter
  • First Online:
  • 745 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

As a first step to the modeling of the scattering data, incoherent scattering background was subtracted by applying Porod’s law. In the scattering profiles, at sufficiently high-q values, the scattering originates solely from the interface between matrix and scattering object.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Consortium Scilab—Digiteo (2011) Scilab: free and open source software for numerical computation (OS, Version 5.3.3) [Software]. Available from: http://www.scilab.org

  2. http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html

  3. Oberdisse J (2004) Small angle neutron scattering and model predictions for micelle-decorated colloidal silicabeads. Phys Chem Chem Phys 6:1557

    Article  CAS  Google Scholar 

  4. http://www.math.niu.edu/~rusin/known-math/96/sph.rand

  5. Despert G, Oberdisse J (2003) Formation of micelle-decorated colloidal silica by adsorption of nonionic surfactant. Langmuir 19:7604

    Article  CAS  Google Scholar 

  6. Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110:1

    Article  CAS  Google Scholar 

  7. Vrij A (1979) Mixtures of hard spheres in the Percus–Yevick approximation. Light scattering at finite angles. J Chem Phys 71:3267

    Article  CAS  Google Scholar 

  8. Pi M, Yang T, Yuan J, Fujii S, Kakigi Y, Nakamura Y, Cheng S (2010) Biomimetic synthesis of raspberry-like hybrid polymer–silica core–shell nanoparticles by templating colloidal particles with hairy polyamine shell. Colloid Surf B 78:193

    Article  CAS  Google Scholar 

  9. Su Y, Yan R, Dan M, Xu J, Wang D, Zhang W, Liu S (2011) Synthesis of hierarchical hollow silica microspheres containing surface nanoparticles employing the quasi-hard template of poly (4-vinylpyridine) microspheres. Langmuir 27:8983

    Article  CAS  Google Scholar 

  10. Holgado M, Santamaria FG, Blanco A, Ibisate M, Cintas A, Miguez H, Serna CJ, Molpeceres C, Requena J, Mifsud A, Meseguer F, Lopez C (1999) Electrophoretic deposition to control artificial opal growth. Langmuir 15:4701

    Article  CAS  Google Scholar 

  11. Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD (2001) Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294:1082

    Article  CAS  Google Scholar 

  12. Velev OD, Bhatt KH (2006) On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738

    Article  CAS  Google Scholar 

  13. Pohl HA (1958) Some effects of nonuniform fields on dielectrics. J Appl Phys 22:869

    Article  Google Scholar 

  14. Jones TB (1995) Electromechanics of particles. Cambridge University Press, UK

    Book  Google Scholar 

  15. Muller T, Gerardino A, Schnelle T, Shirley SG, Bordoni F, DeGasperis G, Leoni R, Fuhr G (1996) Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces. J Phys D Appl Phys 29:340

    Article  Google Scholar 

  16. Stoy RD (1994) Interactive dipole model for two-sphere system. J Electrostat 33:385

    Article  Google Scholar 

  17. Davis JM, Giddings JC (1983) Statistical theory of component overlap in multicomponent chromatograms. Anal Chem 55:418

    Article  CAS  Google Scholar 

  18. Bialas P, Bogacz L, Jhonston D (2000) Finite size scaling of the balls in boxes model. Nucl Phys B 5:599

    Article  Google Scholar 

  19. Ewens WJ, Wilf HS (2007) Computing the distribution of the maximum in balls-and-boxes problems with application to clusters of disease cases. Proc Natl Acad Sci USA 27:11189

    Article  Google Scholar 

  20. Gupta S, Alargova RG, Kilpatrick PK, Velev OD (2008) On-chip electric field driven assembly of biocomposites from live cells and functionalized particles. Soft Matter 4:726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvnesh Bharti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bharti, B. (2014). Theory and Modeling. In: Adsorption, Aggregation and Structure Formation in Systems of Charged Particles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07737-6_3

Download citation

Publish with us

Policies and ethics