Skip to main content

Introduction

  • Chapter
  • First Online:
  • 767 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Colloid science is known to the scientific community for 150 years since the pioneering work of Thomas Graham in the 1860s. In terms of length scales, the colloidal regime is roughly considered between 1 and 1,000 nm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Levine IN (2001) Physical chemistry, vol 5. Tata McGraw-Hill, USA

    Google Scholar 

  2. Martínez AG, Barbosa S, Santos IP, Marzán LML (2011) Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr Opin Colloid Interface Sci 16:118

    Article  Google Scholar 

  3. Henglein A (1861) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 1989:89

    Google Scholar 

  4. Coelho MC, Torrao EN, Grácio J (2012) Nanotechnology in automotive industry: research strategy and trends for the future—small objects, big impacts. J Nanosci Nanotechnol 12:6621

    Article  CAS  Google Scholar 

  5. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222

    Article  CAS  Google Scholar 

  6. Weiss J, Takhistov P, McClements J (2006) Functional materials in food nanotechnology. J Food Sci 71:R107

    Article  CAS  Google Scholar 

  7. Mao Y, McClements DJ (2012) Fabrication of viscous and paste-like materials by controlled heteroaggregation of oppositely charged lipid droplets. Food Chem 134:872

    Article  CAS  Google Scholar 

  8. Liu GY, Wang JM, Xia Q (2012) Application of nanostructured lipid carrier in food for the improved bioavailability. Eur Food Res Technol 234:391

    Article  CAS  Google Scholar 

  9. Patel A, Velikov KP (2011) Colloidal delivery systems in foods: A general comparison with oral drug delivery, LWT-Food. Sci Technol 44:1958

    CAS  Google Scholar 

  10. Osaka T, Matsunga T, Nakanishi T, Arakaki A, Niwa D, Iida H (2006) Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bionanal Chem 384:593

    Article  CAS  Google Scholar 

  11. Xiong HM, Xu Y, Ren QG, Xia YY (2008) Stable aqueous ZnO@ polymer core−shell nanoparticles with tunable photoluminescence and their application in cell imaging. J Am Chem Soc 130:7522

    Article  CAS  Google Scholar 

  12. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097

    Article  CAS  Google Scholar 

  13. Colvin VL, Kulinowski KM (2007) Nanoparticles as catalysts for protein fibrillation. Proc Natl Acad Sci 104:8679

    Article  CAS  Google Scholar 

  14. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16

    Article  CAS  Google Scholar 

  15. Rogach AL, Eychmüller A, Hickey SG, Kershaw SV (2007) Infrared‐emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small 4:536

    Article  Google Scholar 

  16. Prevo BG, Hon EW, Velev OD (2007) Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells. J Mater Chem 17:791

    Article  CAS  Google Scholar 

  17. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617

    Article  CAS  Google Scholar 

  18. Thelander C, Mårtensson T, Björk MT, Ohlsson BJ, Larsson MW, Wallenberg LR, Samuelson L (2003) Single-electron transistors in heterostructure nanowires. Appl Phys Lett 83:2052

    Article  CAS  Google Scholar 

  19. Terray A, Oakey J, Marr DWM (2002) Fabrication of linear colloidal structures for microfluidic applications. Appl Phys Lett 81:1555

    Article  CAS  Google Scholar 

  20. Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 123–126:213

    Article  Google Scholar 

  21. Xiao L, Xu GY, Zhang ZQ, Wang YB, Li GZ (2003) Adsorption of sodium oleate at the interface of oil sand/aqueous solution. Colloids Surf A 224:199

    Article  CAS  Google Scholar 

  22. Holmberg K, Shah DO, Schwuger MJ (2002) Handbook of applied surface and colloid chemistry. Wiley, New York

    Google Scholar 

  23. Jiao J (2008) Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliver Rev 15:1663

    Article  Google Scholar 

  24. Soria-Sánchez M, Maroto-Valiente A, Guerreo-Ruiz A, Nevskaia DM (2010) Adsorption of non-ionic surfactants on hydrophobic and hydrophilic carbon surfaces. J Colloid Interface Sci 343:194

    Article  Google Scholar 

  25. Hunter N, Wanless EJ, Jameson GJ, Pugh RJ (2009) Non-ionic surfactant interactions with hydrophobic nanoparticles: impact on foam stability. Colloids Surf A 347:81

    Article  CAS  Google Scholar 

  26. Griffith JC, Alexander AE (1967) Equilibrium adsorption isotherms for wool/detergent systems: I. The adsorption of sodium dodecyl sulfate by wool. J Colloid Interface Sci 25:311

    Article  CAS  Google Scholar 

  27. Somasundaran P, Krishnakumar S (1997) Adsorption of surfactants and polymers at the solid-liquid interface. Colloids Surf A 123–124:491

    Article  Google Scholar 

  28. Trens P, Denoyel R (1993) Conformation of poly (ethylene glycol) polymers at the silica/water interface: a microcalorimetric study. Langmuir 9:519

    Article  CAS  Google Scholar 

  29. Levitz P, Damme HV (1986) Fluorescence decay study of the adsorption of nonionic surfactants at the solid-liquid interface. 2. Influence of polar chain length. J Phys Chem 90:1302

    Article  CAS  Google Scholar 

  30. Tiberg F (1996) Physical characterization of non-ionic surfactant layers adsorbed at hydrophilic and hydrophobic solid surfaces by time-resolved ellipsometry. J Chem Soc, Faraday Trans 92:531

    Article  CAS  Google Scholar 

  31. Penfold J, Staples E, Tucker I (2002) On the consequences of surface treatment on the adsorption of nonionic surfactants at the hydrophilic silica-solution interface. Langmuir 18:2967

    Article  CAS  Google Scholar 

  32. Grant LM, Tiberg F, Ducker WA (1998) Nanometer-scale organization of ethylene oxide surfactants on graphite, hydrophilic silica, and hydrophobic silica. J Phys Chem B 102:4288

    Article  CAS  Google Scholar 

  33. Ouyang G, Wang X, Yang GW (2009) Surface energy of nanostructural materials with negative curvature and related size effects. Chem Rev 109:4221

    Article  CAS  Google Scholar 

  34. Le NYT, Pham DK, Le KH, Nguyen PT (2011) Design and screening of synergistic blends of SiO2 nanoparticles and surfactants for enhanced oil recovery in high-temperature reservoirs. Adv Nat Sci Nanosci Nanotechnol 2:035013

    Article  Google Scholar 

  35. Dickinson E, Ettelaie R, Kostakis T, Murray BS (2004) Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles. Langmuir 20:8517

    Article  CAS  Google Scholar 

  36. Latterini L, Amelia M (2009) Sensing proteins with luminescent silica nanoparticles. Langmuir 25:4767

    Article  CAS  Google Scholar 

  37. Lugo DM (2010) Adsorption of surfactants on colloidal silica: effects of surface curvature on the structure of surface aggregates. Ph.D. thesis, Technische Universität, Berlin, Germany

    Google Scholar 

  38. Lugo DM, Oberdisse J, Karg M, Schweins R, Findenegg GH (2009) Surface aggregate structure of nonionic surfactants on silica nanoparticles. Soft Matter 5:2928

    Article  CAS  Google Scholar 

  39. Lugo DM, Oberdisse J, Lapp A, Findenegg GH (2010) Effect of nanoparticle size on the morphology of adsorbed surfactant layers. J Phys Chem B 114:4183

    Article  CAS  Google Scholar 

  40. Gallis KW, Araujo JT, Duff KJ, Moore JG, Landry CC (1999) The use of mesoporous silica in liquid chromatography. Adv Mater 17:1452

    Article  Google Scholar 

  41. Chen JF, Ding HM, Wang JX, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25:723

    Article  Google Scholar 

  42. Slowing II, Escoto JLV, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Delivery Rev 60:1278

    Article  CAS  Google Scholar 

  43. Huo Q, Margolese DI, Stucy GD (1996) Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater 8:1147

    Article  CAS  Google Scholar 

  44. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242

    Article  Google Scholar 

  45. Kuang D, Brezesinski T, Smarsly B (2004) Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J Am Chem Soc 126:10534

    Article  CAS  Google Scholar 

  46. Wan Y, Shi Y, Zhao D (2007) Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun 9:897

    Article  Google Scholar 

  47. Shin TG (2010) The self-assembly of surfactants in ordered mesoporous silica studied by neutron scattering. Ph.D. thesis, Technische Universität, Berlin, Germany

    Google Scholar 

  48. Poon WCK (2006) Soft condensed matter physics in molecular and cell biology. Taylor & Francis Group, USA

    Book  Google Scholar 

  49. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225

    Article  CAS  Google Scholar 

  50. Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577

    Article  CAS  Google Scholar 

  51. Lynch I, Salvati A, Kenneth DA (2009) Protein-nanoparticle interactions: What does the cell see? Nat Nanotechnol 4:546

    Article  CAS  Google Scholar 

  52. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128

    Article  CAS  Google Scholar 

  53. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050

    Article  CAS  Google Scholar 

  54. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6:12

    Article  CAS  Google Scholar 

  55. Cohavi O, Corni S, Rienzo RD, Felice RD, Gottschalk KE, Hoefling M, Kokh D, Molinari E, Schreiber G, Vaskevich A, Wade RC (2010) Protein–surface interactions: challenging experiments and computations. J Mol Recognit 23:259

    CAS  Google Scholar 

  56. Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 162:87

    Article  CAS  Google Scholar 

  57. Lynch I, Dawson KA (2008)  Protein-nanoparticle interactions. Nano Today 3:40

    Google Scholar 

  58. Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci 104:2029

    Article  CAS  Google Scholar 

  59. Li N, Zeng S, He L, Zhong W (2010) Probing nanoparticle−protein interaction by capillary electrophoresis. Anal Chem 82:7460

    Article  CAS  Google Scholar 

  60. Pasche S, Vörös J, Griesser HJ, Spencer ND, Textor M (2005) Effects of Ionic strength and surface charge on protein adsorption at PEGylated surfaces. J Phys Chem B 109:17545

    Article  CAS  Google Scholar 

  61. Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B 2:517

    Article  CAS  Google Scholar 

  62. Norde W, Lyklema J (1978) The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces: V. Microcalorimetry. J Colloid Interface Sci 66:295

    Article  CAS  Google Scholar 

  63. Huang R, Carney RP, Stellacci F, Lau BLT (2013) Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale 5:6928

    Google Scholar 

  64. Roach P, Farrar D, Perry CC (2004) Interpretation of protein adsorption:  surface-induced conformational changes. J Am Chem Soc 127:8168

    Article  Google Scholar 

  65. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525

    Article  CAS  Google Scholar 

  66. Daly SM, Przybycien TM, Tilton RD (2003) Coverage-dependent orientation of lysozyme adsorbed on silica. Langmuir 19:3848

    Article  CAS  Google Scholar 

  67. Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J (1998) The effect of solution pH on the structure of lysozyme layers adsorbed at the silica-water interface studied by neutron reflection. Langmuir 14:438

    Article  CAS  Google Scholar 

  68. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800

    Article  CAS  Google Scholar 

  69. Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20:10639

    Article  CAS  Google Scholar 

  70. Norde W, Favier JP (1992) Structure of adsorbed and desorbed proteins. Colloid Surf 64:87

    Article  CAS  Google Scholar 

  71. Vutukuri HR, Stiefelhagen J, Vissers T, Imhof A, van Blaaderen A (2012) Bonding assembled colloids without loss of colloidal stability. Adv Mater 24:412

    Article  CAS  Google Scholar 

  72. Prevo BG, Hon EW, Velev OD (2007) Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells. J Mater Chem 17:791

    Article  CAS  Google Scholar 

  73. Vanmaekelbergh D (2011) Self-assembly of colloidal nanocrystals as route to novel classes of nanostructured materials. Nano Today 6:419

    Article  CAS  Google Scholar 

  74. Zeng Y, Harrison DJ (2007) Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal Chem 79:2289

    Article  CAS  Google Scholar 

  75. Hermanson KD, Lumsdon SO, Williams JP, Kaler EK, Velev OD (2001) Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294:1082

    Article  CAS  Google Scholar 

  76. Velev OD, Gupta S (2001) Materials fabricated by micro- and nanoparticle assembly—The challenging path from science to engineering. Adv Mater 21:1897

    Article  Google Scholar 

  77. Velev OD, Bhatt KH (2006) On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvnesh Bharti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bharti, B. (2014). Introduction. In: Adsorption, Aggregation and Structure Formation in Systems of Charged Particles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07737-6_1

Download citation

Publish with us

Policies and ethics