Advertisement

Personalized Information Retrieval: Application to Virtual Communities

  • Azza Harbaoui
  • Sahbi Sidhom
  • Malek Ghenima
  • Henda Ben Ghezala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8521)

Abstract

Internet has become the largest library through the history of humanity. Having such a big library made the search process more complicated. In fact, traditional search engines answer users by sending back the same results to different users having expressed different information needs and different preferences. A significant part of difficulties [1],[4] is due to vocabulary problems (polysemy, synonymy...). Such problems trigger a strong need for personalizing the search results based on user preferences. The goal of personalized information [11] is to generate meaningful results to a collection of information users that may interest them using user’s profile. This paper presents a personalized information retrieval approach based on user profile. User profile is built from the acquisition of explicit and implicit user data. The proposed approach also presents a semantic-based optimization method for user query. The system uses user profile to construct virtual communities. Moreover, it uses the user’s navigation data to predict user’s preferences in order to update virtual communities.

Keywords

personalized information retrieval user modeling user profile virtual communities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Research, I.A., Zien, J., Meyer, J., Tomlin, J.: Web query characteristics and their implications on search engines. In: Zien, J., Meyer, J.O., Tomlin, J. (eds.) Proceedings of the 10th International WWW Conference, Hong Kong (2001)Google Scholar
  2. 2.
    Robertson, S.: The probability ranking principle in modern information retrieval. Journal of Documentation 33(4), 294–304 (1977)CrossRefGoogle Scholar
  3. 3.
    Allan, J., et al.: Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval. SIGIR. University of Massachusetts Amherst (September 2002)Google Scholar
  4. 4.
    Mianowska, B., Nguyen, N.T.: Tuning user profiles based on analyzing dynamic preference in document retrieval systems. Multimedia Tools and Applications (2012), http://dx.doi.org/10.1007/s11042-012-1145-6
  5. 5.
    Bouidghaghen, O., Tamine, L., Boughanem, M.: Personalizing mobile web search for location sensitive queris. In: Proceedings of the 2011 IEEE 12th International Conference on Mobile Data Management, Lulea, Sweden, vol. 01, pp. 110–118 (2011)Google Scholar
  6. 6.
    Ghosh, R., Dekhil, M.: Discovering user profiles. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1233–1234. Polytechnic University in Madrid (2009)Google Scholar
  7. 7.
    Treur, J., Umair, M.: An agent model integrating an adaptive model for environmental dynamics. International Journal of Intelligent Information and Database Systems 5(1), 201–228 (2012)Google Scholar
  8. 8.
    Tanudjaja, J., Mui, L.: Persona: A contextualized and personalized web search. In: Proc. 35th Hawaii International Conference on System Sciences, Big Island, Hawaii, p. 53 (January 2002)Google Scholar
  9. 9.
    Trajkova, J., Gauch, S.: Improving ontology-based user pro_les. In: Proceedings of the 8th Conference of Recherche d’Information Assistée par Ordinateur, April 26-28, pp. 380–389. University of Avignon, Vaucluse (2004)Google Scholar
  10. 10.
    Wen, J., Lao, N., Ma, W.Y.: Probabilistic model for contextual retrieval. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Shefeld, United Kingdom, pp. 57–63 (August 2004)Google Scholar
  11. 11.
    Tamine, L., Boughanem, M., Zemirli, W.N.: Exploiting multi-evidence from multiple user’s interests to personalizing information retrieval. In: Badr, Y., Chbeir, R., Pichappan, P. (eds.) IEEE International Conference on Digital Information Management (ICDIM 2007), Lyon, France, pp. 7–12. IEEE Engineering Management Society (October 2007)Google Scholar
  12. 12.
    Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the World Wide Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Min, J., Jones, G.J.F.: Building user interest profiles from Wikipedia clusters. In: The Workshop on Enriching Information Retrieval (ENIR 2011) at Special Interest Group on Information Retrieval (SIGIR), Beijing, China (July 2011)Google Scholar
  14. 14.
    Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.): ECIR 2006. LNCS, vol. 3936. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Maleszka, M., Mianowska, B., Nguyen, N.-T.: A heuristic method for collaborative recommendation using hierarchical user profiles. In: Nguyen, N.-T., Hoang, K., Jędrzejowicz, P. (eds.) ICCCI 2012, Part I. LNCS (LNAI), vol. 7653, pp. 11–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Stermsek, G., Strembeck, M., Neumann, G.: User profile refinement using explicit user interest modeling. In: GI-Jahrestagung Conference, pp. 289–293. Technical University in Berlin (2007)Google Scholar
  17. 17.
    Esparza, S.G., O’Mahony, M.P., Smyth, B.: Mining the real-time web: a novel approach to product recommendation. Knowledge-Based Systems 29, 3–11 (2012)CrossRefGoogle Scholar
  18. 18.
    Formoso, V., Fernandez, D., Cacheda, F., Carneiro, V.: Using profile expansion techniques to alleviate the new user problem. Information Processing and Management (2012), http://dx.doi.org/10.1016/j.ipm.2012.07.005

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Azza Harbaoui
    • 1
  • Sahbi Sidhom
    • 2
  • Malek Ghenima
    • 1
  • Henda Ben Ghezala
    • 1
  1. 1.Laboratory RIADI-GDL, National School of Computer SciencesUniversity of Manoubala ManoubaTunisia
  2. 2.KIWI Research Team, LORIALorraine University (Nancy)France

Personalised recommendations