Analyzing HCI Issues in Data Clustering Tools

  • Clodis Boscarioli
  • José Viterbo
  • Mateus Felipe Teixeira
  • Victor Hugo Röhsig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8521)


Due to the rapid growth in the volume of data stored in organizational databases and the human limitations in analyzing and interpreting data, appropriate technics are necessary to allow the identification of a large amount of information and knowledge in such databases. In this context, several techniques and tools have been proposed for enabling the end user to interpret his dataset. In this work we discuss the ways of interacting with cluster analysis tools, taking into account both the clustering and the interpretation stages. We investigate how usability and user experience aspects of such tools can improve the understanding of the discovered knowledge. Moreover, we evaluate the role of visualization methods in the comprehension of groups formed in cluster analysis using Knime, Orange Canvas, RapidMiner Studio and Weka data mining tools.


Data Mining Tools HCI User Evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthrusamy, R.: Advances in knowledge Discovery & Data Mining, California (1996)Google Scholar
  2. 2.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010)CrossRefGoogle Scholar
  3. 3.
    Cormack, R.M.: A Review of Classifications. JRSS, A 134, 321–367 (1971)MathSciNetGoogle Scholar
  4. 4.
    Everitt, B.S., Landau, S., Morven, L.: Cluster Analysis, 4th edn. Hodder Arnold Publishers, Londres (2001)Google Scholar
  5. 5.
    Macqueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, California (1967)Google Scholar
  6. 6.
    Wong, P.C.: Visual Data Mining. In: IEEE Computer Graphics and Applicatinos, Los Alamitos (1999)Google Scholar
  7. 7.
    Ball, G., Hall, D.: ISODATA, a novel method of data anlysis and pattern classification. Technical report NTIS AD 699616. Stanford Research Institute, Stanford, CA (1965)Google Scholar
  8. 8.
    Steinhaus, H.: Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci. IV(C1.III), 801–804 (1956)MathSciNetGoogle Scholar
  9. 9.
    Keim, D., Ward, M.: Visual Data Mining Techniques. Intelligent Data Analysis: An Introduction. University of Konstanz, Worcester Polytechnic Institute, USA (2002)Google Scholar
  10. 10.
    KNIME, Site Oficial da Ferramenta KNIME (2013), (Acesso September 25, 2013)
  11. 11.
    CANVAS, Site Oficial da Ferramenta ORANGE CANVAS (September 09, 2013), (acesso September 25, 2013)
  12. 12.
    RAPIDMINER, Site Oficial da Ferramenta RAPIDMINER STUDIO (2013), (acesso November 17, 2013)
  13. 13.
    WEKA, Waikato Environment for Knowledge Analysis (2013), (acesso September 25, 2013)
  14. 14.
    Whartonm, C., Rieman, J., Lewis, C., Poison, P.: The Cognitive Walkthrough Method: A Practitioner’s Guide. Usability Inspection Methods, New York (1994)Google Scholar
  15. 15.
    Bache, K., Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2013)Google Scholar
  16. 16.
    Keim, D.A., Kriegel, H.: Visualization Techniques for Mining Large Databases: A Comparison. IEEE Trans. Knowledge & Data Engineering, 923–936 (1996)Google Scholar
  17. 17.
    Keim, D.A., Kriegel, H.P.: VisDB: Database Exploration using Multidimensional Visualization. IEEE Computer Graphics and Applications (1994)Google Scholar
  18. 18.
    Keim, D.A.: Information Visualization and Visual Data Mining. IEEE Transactions on Visualization and Computers Graphics 8, 1–8 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Clodis Boscarioli
    • 1
  • José Viterbo
    • 1
  • Mateus Felipe Teixeira
    • 1
  • Victor Hugo Röhsig
    • 2
  1. 1.Western Paraná State University (UNIOESTE)CascavelBrazil
  2. 2.Federal Fluminense University (UFF)NiteróiBrazil

Personalised recommendations