Advertisement

A Step Beyond Visualization: Applying User Interface Techniques to Improve Satellite Data Interaction

  • Tatiana A. Tavares
  • Humberto A. Barbosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8521)

Abstract

In this paper, we discuss the potential of applying interaction techniques to manipulate GEO satellite data. The proposed study shows the potential of Meteosat Second Generation (MSG) data in refining the mesoscale analyses incorporating HCI techniques, as natural interaction resources. Moreover the software tools used to develop the interaction layer,is based on open source codes. Open source codes are also used for geolocation and geographical information systems, written for the transformation of MSG data into input files. This feature have demonstrated a great flexibility and ease of use. The study open up an avenue for successive validation and refinement of the analyses together with their improved implementation for operational nowcasting and very short range forecasting applications.

Keywords

User Interface Augmented Reality Open Source Code Successive Validation Meteosat Second Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ouellette, J.: The Mathematical Shape of Things to Come - Scientific data sets are becoming more dynamic, requiring new mathematical techniques on par with the invention of calculus. Quanta Magazine (October 4, 2013)Google Scholar
  2. 2.
    Nocke, T., Sterzel, T., Böttinger, M., Wrobel, M.: Visualization of climate and climate change data: An overview. In: Digital Earth Summit on Geoinformatics, pp. 226–232 (2008)Google Scholar
  3. 3.
    Kehrer, J.: Interactive visual analysis of multi-faceted scientific data (Doctoral dissertation. PhD dissertation, Dept. of Informatics, Univ. of Bergen, Norway) (2011)Google Scholar
  4. 4.
    Ishii, H., Lakatos, D., Bonanni, L., Labrune, J.B.: Radical atoms: beyond tangible bits, toward transformable materials. Interactions 19(1), 38–51 (2012)Google Scholar
  5. 5.
    Tavares, T.A., Medeiros, A., de Castro, R., dos Anjos, E.: The use of natural interaction to enrich the user experience in telemedicine systems. In: Stephanidis, C. (ed.) Posters, HCII 2013, Part II. CCIS, vol. 374, pp. 220–224. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Tavares, T.A., Motta, G.H.M.B., Souza Filho, G., Mello, E.: Experiences with Arthron for Live Surgery Transmission in Brazilian Telemedicine University Network. In: Kurosu, M. (ed.) Human-Computer Interaction, HCII 2013, Part II. LNCS, vol. 8005, pp. 197–206. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Post, F.H., van Wijk, J.J.: Visual representation of vector fields. In: Rosenblum, L., et al. (eds.) Scientific Visualization: Advances and Challenges, pp. 367–390 (1994)Google Scholar
  8. 8.
    Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., Chiba, N.: A hybrid method for real-time animation of trees swaying in wind fields. The Visual Computer 20(10), 613–623 (2004)CrossRefGoogle Scholar
  9. 9.
    Buckley, A.: Guidelines for the Effective Design of Spatio-Temporal Maps. In: 26th International Cartographic Conference, ICC 2013 (2013), http://icaci.org/files/documents/ICC_proceedings/ICC2013/_extendedAbstract/443_proceeding.pdf
  10. 10.
    Viégas, F., Wattenberg, M., Hebert, J., Borggaard, G., Cichowlas, A., Feinberg, J., ... Wren, C.: Google+ Ripples: a native visualization of information flow. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1389–1398. International World Wide Web Conferences Steering Committee (2013)Google Scholar
  11. 11.
  12. 12.
    Erlebacher, G., Yuen, D.A., Dubuffet, F.: Current trends and demands in visualization in the geosciences. Visual Geosciences formerly Electronic Geosciences 6(3), 1–59 (2001)Google Scholar
  13. 13.
    Heinrich, M., Thomas, B., Mueller, S.: ARWeather - An Augmented Reality Weather System. In: IEEE International Symposium on Mixed and Augmented Reality 2008, Cambridge, UK, pp. 15–18 (2008)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    Doswell, C.A., Maddox, R.A.: The role of diagnosis in weather forecasting. In: Proceedingsof the 11th Conference on Weather Forecasting and Analysis, pp. 177–182. American Meteorological Society, Boston (1986)Google Scholar
  17. 17.
    Tavares, T.A., Schofield, D.: Interaction Design for Convergence Medias and Devices: a Multisensory Challenge. In: Lugmayr, A., Zotto, C.D., Lowe, G.F. (eds.) Convergent Divergence? – Cross-Disciplinary Viewpointon Media Convergence, 1st edn. Springer-Verlag Handbook (2013)Google Scholar
  18. 18.
    EUMETCast—EUMETSAT’s broadcastsystem for environmental data. EUM TD 15, Darmstadt, Germany, 34 p. EUMETSAT (2004)Google Scholar
  19. 19.
    Meteosat second generation—system overview. EUM TD07, Darmstadt, Germany, 44 p. EUMETSAT (2001)Google Scholar
  20. 20.
    Barbosa, H.A.: Sistema EUMETCast: Uma abordagem aplicada dos Meteosat Segunda Geração, 1st edn., vol. 2, 186, p. EDUFAL, Maceió (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tatiana A. Tavares
    • 1
  • Humberto A. Barbosa
    • 2
  1. 1.Informatics InstituteFederal University of ParaibaJoão PessoaBrazil
  2. 2.Federal University of AlagoasMaceioBrazil

Personalised recommendations