Advertisement

Visualization Tool for Finding of Researcher Relations

  • Takafumi Aoki
  • Yoshikazu Sasamoto
  • Keisuke Makita
  • Shingo Otsuka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8521)

Abstract

It is possible to collect knowledge of interest research field effectively if we can look for the key person of the field. In addition, when the people who belong to administrations and companies want to undertake information gathering to the person of a particular field, it is convenient if the key person of the field is found easily. In this paper, we propose the visualization tool for finding of researcher relations using the conference programs.

Keywords

Visualization Tool Human Relation Social Network Feature Conference Program Database Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Kondo, T., Nanba, H., Takezawa, T., Okumura, M.: Technical trend analysis by analyzing research papers’ titles. In: Vetulani, Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 512–521. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Nanba, H., Kondo, T., Takezawa, T.: Automatic creation of a technical trend map from research papers and patents. In: Proc. the 3rd International CIKM Workshop on Patent Information Retrieval (PaIR 2010), pp. 11–15 (2010)Google Scholar
  5. 5.
    Fukuda, S., Nanba, H., Takezawa, T.: Extraction and visualization of technical trend information from research papers and patents. In: Proc. the 1st International Workshop on Mining. Scientific Publications (2012)Google Scholar
  6. 6.
    Karamon, J., Matsuo, Y., Yamamoto, H., Ishizuka, M.: Generating social network features for link-based classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 127–139. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Nguyen, M., Kato, D., Hashimoto, T., Yokota, H.: Research history generation from metainformation of research papers using maximum margin clustering. International Journal of Business Intelligence and Data Mining 7, 217–231 (2012)CrossRefGoogle Scholar
  8. 8.
    Jin, Y., Matsuo, Y., Ishizuka, M.: Extracting social networks among various entities on the web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 251–266. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    The Institute of Electronics, Information and Communication Engineers, http://www.ieice.org/eng/index.html
  10. 10.
    IEICE Technical Committee Submission System, http://www.ieice.org/ken/program/index.php?lang=eng

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Takafumi Aoki
    • 1
  • Yoshikazu Sasamoto
    • 1
  • Keisuke Makita
    • 2
  • Shingo Otsuka
    • 2
  1. 1.Kanagawa Institute of TechnologyAtsugi-shiJapan
  2. 2.Graduate School of Kanagawa Institute of TechnologyAtsugi-shiJapan

Personalised recommendations