Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 295))

Abstract

We introduce a generalization of Multivariate Robust Soft Learning Vector Quantization. The approach is a probabilistic classifier and can deal with vectorial class labelings for the training data and the prototypes. It employs t-norms, known from fuzzy learning and fuzzy set theory, in the class label assignments, leading to a more flexible model with respect to domain requirements. We present experiments to demonstrate the extended algorithm in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schneider, P., Geweniger, T., Schleif, F.M., Biehl, M., Villmann, T.: Multivariate class labeling in Robust Soft LVQ. In: Verleysen, M. (ed.) 19th European Symposium on Artificial Neural Networks (ESANN 2011), pp. 17–22. d-side publishing (2011)

    Google Scholar 

  2. Bhattacharya, S., Bhatnagar, V.: Fuzzy data mining: A literature survey and classification framework. International Journal of Networking and Virtual Organisations 11(3-4), 382–408 (2012)

    Article  Google Scholar 

  3. Bonilla, E.V., Robles-Kelly, A.: Discriminative probabilistic prototype learning. In: ICML. icml.cc / Omnipress (2012)

    Google Scholar 

  4. Geweniger, T., Villmann, T.: Extending FSNPC to handle data points with fuzzy class assignments. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks (ESANN 2010), Brussels, Belgium. d-side publications (2010)

    Google Scholar 

  5. Schleif, F.-M., Villmann, T., Hammer, B., Schneider, P.: Efficient kernelized prototype based classification. Int. J. Neural Syst. 21(6), 443–457 (2011)

    Article  Google Scholar 

  6. Schneider, P., Biehl, M., Hammer, B.: Distance learning in discriminative vector quantization. Neural Computation 21(10), 2942–2969 (2009)

    Article  MathSciNet  Google Scholar 

  7. Hammer, B., Schleif, F.-M., Zhu, X.: Relational extensions of learning vector quantization. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 481–489. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15, 1589–1604 (2003)

    Article  Google Scholar 

  9. Schneider, P.: Advanced methods for prototype-based classification. PhD thesis, Rijksuniveriteit Groningen (2010)

    Google Scholar 

  10. Menger, K.: Statistical metrics. Proceedings of the National Academy of Sciences 28(12), 535–537 (1942)

    Article  MathSciNet  Google Scholar 

  11. Gosztolya, G., Dombi, J., Kocsor, A.: Applying the generalized dombi operator family to the speech recognition task. CIT 17(3), 285–293 (2009)

    Article  Google Scholar 

  12. Senthil Kumar, A.V.: Diagnosis of heart disease using fuzzy resolution mechanism. Journal of Artificial Intelligence 5(1), 47–55 (2012)

    Article  Google Scholar 

  13. Ciaramella, A., Tagliaferri, R., Pedrycz, W., di Nola, A.: Fuzzy relational neural network. Int. J. Approx. Reasoning 41(2), 146–163 (2006)

    Article  MathSciNet  Google Scholar 

  14. Quost, B., Masson, M.-H., Denaux, T.: Classifier fusion in the dempster-shafer framework using optimized t-norm based combination rules. International Journal of Approximate Reasoning 52(3), 353–374 (2011)

    Article  MathSciNet  Google Scholar 

  15. Farahbod, F., Eftekhari, M.: Comparison of different t-norm operators in classification problems. International Journal of Fuzzy Logic Systems 2(3), 33–39 (2012)

    Article  Google Scholar 

  16. Lange, M., Villmann, T.: Derivatives of l p-norms and their approximations. Machine Learning Reports 04/2013, pp. 43–59 (2013)

    Google Scholar 

  17. Schneider, P., Biehl, M., Hammer, B.: Hyperparameter learning in probabilistic prototype-based models. Neurocomputing 73(7-9), 1117–1124 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Geweniger, T., Schleif, FM., Villmann, T. (2014). Probabilistic Prototype Classification Using t-norms. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics