Skip to main content

Solving Systems of Linear Equations

  • Chapter
  • First Online:
Numerical Methods and Optimization
  • 4420 Accesses

Abstract

Solving a system of linear equations \( \mathbf {Ax} = \mathbf {b}\) for \(\mathbf {x}\) plays a key role in enough problems and algorithms to deserve a chapter of its own. We assume here that there are as many scalar equations as there are scalar unknowns (so \(\mathbf {A}\) is square), and that the solution is unique (so \(\mathbf {A}\) is invertible). Mathematically, this solution is then given in closed form as \(\mathbf {x} = \mathbf {A}^{- 1}\mathbf {b}\), but this is not how it should be computed numerically. Various methods best avoided for solving a system of linear equations numerically are pointed out, and numerically robust methods are described. The condition number of \(\mathbf {A}\) is a good indicator of the intrinsic difficulty of the problem, independently of the method used for solving it. Direct methods attempt to evaluate \(\mathbf {x}\) from the numerical values of \(\mathbf {A}\) and \(\mathbf {b}\) by a finite number of steps, whereas classical iterative methods aim at converging towards the solution in an infinite number of steps. Krylov subspace iteration has blurred the lines, as it would converge to the exact solution in a finite number of steps if the computations were carried out exactly, just as direct methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  2. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  3. Ascher, U., Greif, C.: A First Course in Numerical Methods. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  4. Rice, J.: A theory of condition. SIAM J. Numer. Anal. 3(2), 287–310 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demmel, J.: The probability that a numerical analysis problem is difficult. Math. Comput. 50(182), 449–480 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Higham, N.: Fortran codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation (algorithm 674). ACM Trans. Math. Softw. 14(4), 381–396 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Higham, N., Tisseur, F.: A block algorihm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21, 1185–1201 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Higham, N.: Gaussian elimination. Wiley Interdiscip. Rev. Comput. Stat. 3(3), 230–238 (2011)

    Article  Google Scholar 

  9. Stewart, G.: The decomposition approach to matrix computation. Comput. Sci. Eng. 2(1), 50–59 (2000)

    Article  Google Scholar 

  10. Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  11. Golub G, Kahan W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2(2), 205–224 (1965)

    Google Scholar 

  12. Stewart, G.: On the early history of the singular value decomposition. SIAM Rev. 35(4), 551–566 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Varah, J.: On the numerical solution of ill-conditioned linear systems with applications to ill-posed problems. SIAM J. Numer. Anal. 10(2), 257–267 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  15. Young, D.: Iterative methods for solving partial difference equations of elliptic type. Ph.D. thesis, Harvard University, Cambridge, MA (1950)

    Google Scholar 

  16. Gutknecht, M.: A brief introduction to Krylov space methods for solving linear systems. In: Y. Kaneda, H. Kawamura, M. Sasai (eds.) Proceedings of International Symposium on Frontiers of Computational Science 2005, pp. 53–62. Springer, Berlin (2007)

    Google Scholar 

  17. van der Vorst, H.: Krylov subspace iteration. Comput. Sci. Eng. 2(1), 32–37 (2000)

    Article  Google Scholar 

  18. Dongarra, J., Sullivan, F.: Guest editors’ introduction to the top 10 algorithms. Comput. Sci. Eng. 2(1), 22–23 (2000)

    Article  Google Scholar 

  19. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stan 49(6), 409–436 (1952)

    Google Scholar 

  20. Golub, G., O’Leary, D.: Some history of the conjugate gradient and Lanczos algorithms: 1948–1976. SIAM Rev. 31(1), 50–102 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shewchuk, J.: An introduction to the conjugate gradient method without the agonizing pain. Technical report, School of Computer Science. Carnegie Mellon University, Pittsburgh (1994)

    Google Scholar 

  22. Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  23. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. van der Vorst, H.: Bi-CGSTAB: a fast and smoothly convergent variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MATH  Google Scholar 

  25. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Saad, Y.: Preconditioning techniques for nonsymmetric and indefinite linear systems. J. Comput. Appl. Math. 24, 89–105 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grote, M., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Higham, N.: Cholesky factorization. Wiley Interdiscip. Rev. Comput. Stat. 1(2), 251–254 (2009)

    Article  Google Scholar 

  29. Ciarlet, P.: Introduction to Numerical Linear Algebra and Optimization. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  30. Gilbert, J., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Appl. 13, 333–356 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Walter .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walter, É. (2014). Solving Systems of Linear Equations. In: Numerical Methods and Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-07671-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07671-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07670-6

  • Online ISBN: 978-3-319-07671-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics