Skip to main content

Assessing Numerical Errors

  • Chapter
  • First Online:
Numerical Methods and Optimization
  • 4331 Accesses

Abstract

Methods are described that use the computer itself for assessing the effect of its rounding errors on the precision of its numerical results. The assessment of the effect of method errors is also considered. The floating-point representation of real numbers and rounding modes available according to IEEE standard 754, with which most of today’s computers comply, are recalled. The cumulative effect of rounding errors is investigated. The main classes of methods available for quantifying numerical errors are presented. A particularly simple yet potentially very useful approach is described, as well as a more sophisticated probabilistic method for evaluating the number of significant decimal digits in a numerical result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pichat, M., Vignes, J.: Ingénierie du contrôle de la précision des calculs sur ordinateur. Editions Technip, Paris (1993)

    Google Scholar 

  2. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

    Article  Google Scholar 

  3. IEEE: IEEE standard for floating-point arithmetic. Technical Report IEEE Standard 754–2008, IEEE Computer Society (2008)

    Google Scholar 

  4. Higham, N.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Google Scholar 

  5. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)

    Book  MATH  Google Scholar 

  6. Chesneaux, J.M.: Etude théorique et implémentation en ADA de la méthode CESTAC. Ph.D. thesis, Université Pierre et Marie Curie (1988)

    Google Scholar 

  7. Chesneaux, J.M.: Study of the computing accuracy by using probabilistic approach. In: Ullrich, C. (ed.) Contribution to Computer Arithmetic and Self-Validating Methods, pp. 19–30. J.C. Baltzer AG, Amsterdam (1990)

    Google Scholar 

  8. Chesneaux, J.M.: L’arithmétique stochastique et le logiciel CADNA. Université Pierre et Marie Curie, Habilitation à diriger des recherches (1995)

    Google Scholar 

  9. Kulisch, U.: Very fast and exact accumulation of products. Computing 91, 397–405 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wilkinson, J.: Rounding Errors in Algebraic Processes, reprinted edn. Dover, New York (1994)

    MATH  Google Scholar 

  11. Wilkinson, J.: Modern error analysis. SIAM Rev. 13(4), 548–568 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kahan, W.: How futile are mindless assessments of roundoff in floating-point computation? www.cs.berkeley.edu/~wkahan/Mindless.pdf (2006) (work in progress)

  13. Moore, R.: Automatic error analysis in digital computation. Technical Report LMSD-48421, Lockheed Missiles and Space Co, Palo Alto, CA (1959)

    Google Scholar 

  14. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  15. Moore, R.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  16. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  17. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)

    Book  MATH  Google Scholar 

  18. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Horwood, Chichester (1988)

    MATH  Google Scholar 

  19. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  20. Bertz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4, 361–369 (1998)

    Article  MathSciNet  Google Scholar 

  21. Nedialkov, N., Jackson, K., Corliss, G.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nedialkov, N.: VNODE-LP, a validated solver for initial value problems in ordinary differential equations. Technical Report CAS-06-06-NN, Department of Computing and Software, McMaster University, Hamilton (2006)

    Google Scholar 

  23. Wilkinson, J.: Error analysis revisited. IMA Bull. 22(11/12), 192–200 (1986)

    MATH  MathSciNet  Google Scholar 

  24. Zahradnicky, T., Lorencz, R.: FPU-supported running error analysis. Acta Polytechnica 50(2), 30–36 (2010)

    Google Scholar 

  25. La Porte, M., Vignes, J.: Algorithmes numériques, analyse et mise en œuvre, 1: Arithmétique des ordinateurs. Systèmes linéaires. Technip, Paris (1974)

    Google Scholar 

  26. Vignes, J.: New methods for evaluating the validity of the results of mathematical computations. Math. Comput. Simul. 20(4), 227–249 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vignes, J., Alt, R., Pichat, M.: Algorithmes numériques, analyse et mise en œuvre, 2: équations et systèmes non linéaires. Technip, Paris (1980)

    Google Scholar 

  28. Vignes, J.: A stochastic arithmetic for reliable scientific computation. Math. Comput. Simul. 35, 233–261 (1993)

    Article  MathSciNet  Google Scholar 

  29. Muller, J.M.: Elementary Functions, Algorithms and Implementation, 2nd edn. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  30. Rump, S.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Walter .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walter, É. (2014). Assessing Numerical Errors. In: Numerical Methods and Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-07671-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07671-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07670-6

  • Online ISBN: 978-3-319-07671-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics