Advertisement

Interfacing CBIR: Designing Interactive Widgets to Query Attribute Data in Face Image Retrieval

  • Ted Davis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8518)

Abstract

This paper establishes a unique method in visual search for the querying of face image attribute data, through a modular interface composed of interactive widgets. These widgets enable the user to define a model result through abstracted visual representations of each portrait attribute. The combined inputs construct compound queries for comparing quantitative values. Such a technique can help bridge the semantic gap within image retrieval by avoiding the continued and prevalent reliance on keywords and text-based inputs for the description and querying of pictorial content. Rather than a graphical user interface being an afterthought to a novel image processing technique, this research utilizes existing image datasets as a future given and addresses how content-based image retrieval (CBIR) can advance when reconsidering the role and importance of design.

Keywords

content-based image retrieval CBIR image search visual search query portrait face attribute interaction interface design semantic gap graphical user interface GUI widget relevance feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorai, C., Venkatesh, S.: Bridging the semantic gap with computational media aesthetics. IEEE MultiMedia 10, 15–17 (2003)CrossRefGoogle Scholar
  2. 2.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence. 22, 1349–1380 (2000) CrossRefGoogle Scholar
  3. 3.
    Jörgensen, C.: Image retrieval: theory and research. Scarecrow Press, Lanham (2003)Google Scholar
  4. 4.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Comput. Surv. 40, 5:1–5:60 (2008)Google Scholar
  5. 5.
    Thomee, B., Lew, M.S.: Interactive search in image retrieval: a survey. Int. J. Multimed. Info. Retr. 1, 71–86 (2012)CrossRefGoogle Scholar
  6. 6.
    Niblack, C.W., Barber, R., Equitz, W., Flickner, M.D., Glasman, E.H., Petkovic, D., Yanker, P., Faloutsos, C., Taubin, G.: QBIC project: querying images by content, using color, texture, and shape (1993)Google Scholar
  7. 7.
    Engel, D., Herdtweck, C., Browatzki, B., Curio, C.: Image Retrieval with Semantic Sketches. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part I. LNCS, vol. 6946, pp. 412–425. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Giangreco, I., Springmann, M., Kabary, I.A., Schuldt, H.: A User Interface for Query-by-Sketch Based Image Retrieval with Color Sketches. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 571–572. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    TinEye Reverse Image Search, http://tineye.com
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    Kumar, N., Belhumeur, P.N., Nayar, S.K.: FaceTracer: A Search Engine for Large Collections of Images with Faces. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 340–353. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Describable Visual Attributes for Face Verification and Image Search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 1962–1977 (2011)CrossRefGoogle Scholar
  17. 17.
    Kostinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2144–2151 (2011)Google Scholar
  18. 18.
    Zhou, X.S., Huang, T.S.: Relevance feedback in image retrieval: A comprehensive review. Multimedia Systems 8, 536–544 (2003)CrossRefGoogle Scholar
  19. 19.
    Blanz, V., Vetter, T.: A Morphable Model For The Synthesis of 3D Faces (1999)Google Scholar
  20. 20.
    RRAWW Search, http://www.rraww.net

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ted Davis
    • 1
  1. 1.The Basel School of Design, HGK FHNWVisual Communication InstituteBaselSwitzerland

Personalised recommendations