Advertisement

Abstract

Data processing and analysis has become a major task in a lot of application domains. Most tools for defining analytical processes lack a user oriented interface – especially when it comes to Big Data analytics.

In this work we propose an abstraction layer for process design that enables domain experts to define their processes at an abstract level that matches their expertise. Based on that, we investigate the use of machine learning to provide gesture recognition on input devices like tablets to provide these experts with a intuitive environment for process design.

Keywords

Domain Expert Handwriting Recognition Streaming Application Stream Application Processor Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apache Hadoop (2007), http://hadoop.apache.org/
  2. 2.
    Apache Pig (2008), http://pig.apache.org/
  3. 3.
    Anderhub, H., Backes, M., Biland, A., et al.: Design and operation of FACT – the first G-APD Cherenkov telescope. Journal of Instrumentation 8(06), P06008 (2013)Google Scholar
  4. 4.
    Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer (2007)Google Scholar
  5. 5.
    Bockermann, C.: The streams framework (2012)Google Scholar
  6. 6.
    Chakraborty, B., Chakraborty, G.: A new feature extraction technique for on-line recognition of handwritten alphanumeric characters. Information Sciences 148(14), 55–70 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    The INSIGHT Project Consortium. Intelligent Synthesis and Real-time Response using Massive Streaming of Heterogeneous Data (2012-2015), http://insight-ict.eu
  8. 8.
    The ViSTA-TV Project Consortium. ViSTA-TV – Video Stream Analysis for the IP-TV Industry (2012-2014), http://vista-tv.eu
  9. 9.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  10. 10.
    Marz, N., et al.: Storm - distributed and fault-tolerant realtime computation (2013)Google Scholar
  11. 11.
    Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. SIGKDD Explorations 14(2), 1–5 (2012)CrossRefGoogle Scholar
  12. 12.
    Gal, A., Keren, S., Sondak, M., Weidlich, M., Blom, H., Bockermann, C.: Grand challenge: the techniball system. In: Chakravarthy, S., Urban, S.D., Pietzuch, P., Rundensteiner, E.A. (eds.) DEBS, pp. 319–324. ACM (2013)Google Scholar
  13. 13.
    Yieldbot Group. Marceline – a Clojure DSL for Storm/Trident (2013)Google Scholar
  14. 14.
    Karam, M., Schraefel, M.C.: A taxonomy of gestures in human computer interactions. Technical report, University of Southampton (2005)Google Scholar
  15. 15.
    LeCun, Y., Cortes, C.: The MNIST Database, http://yann.lecun.com/exdb/mnist/
  16. 16.
    MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick (2010)Google Scholar
  17. 17.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Ungar, L., Craven, M., Gunopulos, D., Eliassi-Rad, T. (eds.) KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–940. ACM, New York (2006)Google Scholar
  18. 18.
    Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed Stream Computing Platform. In: International Conference on Data Mining Workshops, CA, USA, pp. 170–177. IEEE Computer Society (2010)Google Scholar
  19. 19.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013)Google Scholar
  20. 20.
    Spring. Springframework reference manual 3.1 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christian Bockermann
    • 1
  1. 1.Artificial Intelligence Group, Computer ScienceTechnische Universität DortmundGermany

Personalised recommendations