Skip to main content

Horizontal Gene Transfer and the Role of Restriction-Modification Systems in Bacterial Population Dynamics

  • Chapter
  • First Online:
Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life
  • 2599 Accesses

Abstract

Horizontal gene transfer (HGT) mediates non-vertical exchange of genetic elements thereby obfuscating the phylogenetic signal associated with vertically inherited mutations. Bacterial species exposed to significant HGT deviate from the clonal paradigm of a-sexual reproduction, towards pan-mictic admixtures. Intermediate population structures were also observed in which, despite high HGT rates, well-defined lineages coexist with a pan-mictic background. Different “forces” have been proposed to account for the containment of the HGT pan-mixing effect, including selection, fitness-related expansions and micro-epidemic evolution. Restriction-modification systems (RMSs) modulate the length of horizontally transferred DNA by selective cleavage of genetic material with heterologous methylation patterns. In a pan-genomic analysis of the Neisseria meningitidis bacterial species, sets of RMSs associated to specific lineages were shown to generate a differential barrier to DNA exchange, consistent with the inferred phylogeny.These data suggest that HGT, instead of being a “force” opposed to the emergence, persistence and global dissemination of consistent lineages, when modulated by RMSs can be the very cause of the intermediate population structures observed for the majority of pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson NG (1970) Evolutionary significance of virus infection. Nature 227:1346–1347

    CAS  PubMed  Google Scholar 

  • Andersson JO, Doolittle WF, Nesbo CL (2001) Genomics. Are there bugs in our genome? Science 292:1848–1850

    CAS  PubMed  Google Scholar 

  • Anthony KG, Sherburne C, Sherburne R, Frost LS (1994) The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Mol Microbiol 13:939–953

    CAS  PubMed  Google Scholar 

  • Baumler AJ (1997) The record of horizontal gene transfer in Salmonella. Trends Microbiol 5:318–322

    CAS  PubMed  Google Scholar 

  • Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, Chillingworth T et al (2007) Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3:e23

    PubMed Central  PubMed  Google Scholar 

  • Bickle TA, Kruger DH (1993) Biology of DNA restriction. Microbiol Rev 57:434–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bohr N (1913) On the constitution of atoms and molecules. Phil Mag 26:1–15

    CAS  Google Scholar 

  • Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL et al (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328

    CAS  PubMed  Google Scholar 

  • Brochier C, Philippe H, Moreira D (2000) The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet 16:529–533

    CAS  PubMed  Google Scholar 

  • Brussow H, Hendrix RW (2002) Phage genomics: small is beautiful. Cell 108:13–16

    CAS  PubMed  Google Scholar 

  • Bucci C, Lavitola A, Salvatore P, Del Giudice L, Massardo DR, Bruni CB et al (1999) Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell 3:435–445

    CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Passiatore JE, Cannon F (1987) The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328:172–175

    CAS  Google Scholar 

  • Buckee CO, Jolley KA, Recker M, Penman B, Kriz P, Gupta S et al (2008) Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc Natl Acad Sci USA 105:15082–15087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D, Nofroni C et al (2011) Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci USA 108:4494–4499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brussow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424

    CAS  PubMed  Google Scholar 

  • Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I et al (2009) Meningococcal interactions with the host. Vaccine 27(Suppl 2):B78–B89

    CAS  PubMed  Google Scholar 

  • Caugant DA, Froholm LO, Bovre K, Holten E, Frasch CE, Mocca LF et al (1986) Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc Natl Acad Sci USA 83:4927–4931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249

    CAS  PubMed  Google Scholar 

  • Cheng X (1995) Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct 24:293–318

    CAS  PubMed  Google Scholar 

  • Choi J, Shin D, Ryu S (2007) Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity island 1. Infect Immun 75:4885–4890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. J. Murray, London

    Google Scholar 

  • Daubin V, Moran NA, Ochman H (2003) Phylogenetics and the cohesion of bacterial genomes. Science 301:829–832

    CAS  PubMed  Google Scholar 

  • De Gregorio E, Abrescia C, Carlomagno MS, Di Nocera PP (2002) The abundant class of nemis repeats provides RNA substrates for ribonuclease III in Neisseriae. Biochim Biophys Acta 1576:39–44

    PubMed  Google Scholar 

  • Deng W, Liou SR, Plunkett G 3rd, Mayhew GF, Rose DJ, Burland V et al (2003) Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185:2330–2337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D (2007) A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? Genome Res 17:61–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doolittle RF, Feng DF, Anderson KL, Alberro MR (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31:383–388

    CAS  PubMed  Google Scholar 

  • Doolittle RF, Feng DF, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–477

    CAS  PubMed  Google Scholar 

  • Doolittle WF (1999a) Lateral genomics. Trends Cell Biol 9:M5–M8

    CAS  PubMed  Google Scholar 

  • Doolittle WF (1999b) Phylogenetic classification and the universal tree. Science 284:2124–2129

    CAS  PubMed  Google Scholar 

  • Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244

    CAS  PubMed  Google Scholar 

  • Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Munoz Torres MC et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    CAS  PubMed  Google Scholar 

  • Erwin AL, Sandstedt SA, Bonthuis PJ, Geelhood JL, Nelson KL, Unrath WC et al (2008) Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. J Bacteriol 190:1473–1483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feil EJ (2004) Small change: keeping pace with microevolution. Nat Rev Microbiol 2:483–495

    CAS  PubMed  Google Scholar 

  • Feil EJ, Holmes EC, Bessen DE, Chan MS, Day NP, Enright MC et al (2001) Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci USA 98:182–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fivian-Hughes AS, Davis EO (2010) Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis. J Bacteriol 192:4348–4356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fraser C, Hanage WP, Spratt BG (2005) Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci USA 102:1968–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaballa A, Helmann JD (1998) Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180:5815–5821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ et al (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    CAS  PubMed  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    CAS  PubMed  Google Scholar 

  • Goldman BS, Kranz RG (1998) Evolution and horizontal transfer of an entire biosynthetic pathway for cytochrome c biogenesis: Helicobacter, Deinococcus, Archae and more. Mol Microbiol 27:871–873

    CAS  PubMed  Google Scholar 

  • Goodman SD, Scocca JJ (1988) Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci USA 85:6982–6986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gribaldo S, Lumia V, Creti R, Conway de Macario E, Sanangelantoni A, Cammarano P (1999) Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J Bacteriol 181:434–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith F (1928) The significance of Pneumococcal types. J Hyg (Lond) 27:113–159

    CAS  Google Scholar 

  • Groisman EA, Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794

    CAS  PubMed  Google Scholar 

  • Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097

    CAS  PubMed  Google Scholar 

  • Heitman J (1993) On the origins, structures and functions of restriction-modification enzymes. Genet Eng (NY) 15:57–108

    CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    CAS  PubMed  Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 3:274–293

    CAS  PubMed  Google Scholar 

  • Jolley KA, Wilson DJ, Kriz P, McVean G, Maiden MC (2005) The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol Biol Evol 22:562–569

    CAS  PubMed  Google Scholar 

  • Khan SA (1997) Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61:442–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klasson L, Westberg J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC et al (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 106:5725–5730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15:954–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurland CG (2000) Something for everyone. Horizontal gene transfer in evolution. EMBO Rep 1:92–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100:9658–9662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460

    PubMed  Google Scholar 

  • Lawrence JG, Hendrickson H (2003) Lateral gene transfer: when will adolescence end? Mol Microbiol 50:739–749

    CAS  PubMed  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    CAS  PubMed  Google Scholar 

  • Lederberg J (1956) Conjugal pairing in Escherichia coli. J Bacteriol 71:497–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130

    PubMed Central  PubMed  Google Scholar 

  • Lin EA, Zhang XS, Levine SM, Gill SR, Falush D, Blaser MJ (2009) Natural transformation of helicobacter pylori involves the integration of short DNA fragments interrupted by gaps of variable size. PLoS Pathog 5:e1000337

    PubMed Central  PubMed  Google Scholar 

  • Linehan SA, Rytkonen A, Yu XJ, Liu M, Holden DW (2005) SlyA regulates function of Salmonella pathogenicity island 2 (SPI-2) and expression of SPI-2-associated genes. Infect Immun 73:4354–4362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu SV, Saunders NJ, Jeffries A, Rest RF (2002) Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. J Bacteriol 184:6163–6173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species, vol 334. Columbia University Press, New York, p 324

    Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    CAS  PubMed  Google Scholar 

  • Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R et al (2008) Microbiology in the post-genomic era. Nat Rev Microbiol 6:419–430

    CAS  PubMed  Google Scholar 

  • Morse ML, Lederberg EM, Lederberg J (1956) Transduction in Escherichia Coli K-12. Genetics 41:142–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray K, Murray NE, Brammar WJ (1975) Restriction enzymes and the cloning of eukaryotic DNA. FEBS 10:193–207

    Google Scholar 

  • Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ et al (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236–238

    CAS  PubMed  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    CAS  PubMed  Google Scholar 

  • Nomura M (1999) Engineering of bacterial ribosomes: replacement of all seven Escherichia coli rRNA operons by a single plasmid-encoded operon. Proc Natl Acad Sci USA 96:1820–1822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    CAS  PubMed  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    CAS  PubMed  Google Scholar 

  • Ohnishi M, Kurokawa K, Hayashi T (2001) Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol 9:481–485

    CAS  PubMed  Google Scholar 

  • Packiam M, Shell DM, Liu SV, Liu YB, McGee DJ, Srivastava R et al (2006) Differential expression and transcriptional analysis of the alpha-2,3-sialyltransferase gene in pathogenic Neisseria spp. Infect Immun 74:2637–2650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR et al (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404:502–506

    CAS  PubMed  Google Scholar 

  • Pingoud A, Jeltsch A (1997) Recognition and cleavage of DNA by type-II restriction endonucleases. Eur J Biochem 246:1–22

    CAS  PubMed  Google Scholar 

  • Pingoud A, Jeltsch A (2001) Structure and function of type II restriction endonucleases. Nucleic Acids Res 29:3705–3727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raleigh EA, Brooks JE (1998) Restriction modification systems: where they are and what they do. In: De Bruijn FJ, Lupski JR, Weinstock GM (ed) Bacterial genomes. Chapman & Hall, New York, pp 78–92

    Google Scholar 

  • Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts RJ, Macelis D (2001) REBASE–restriction enzymes and methylases. Nucleic Acids Res 29:268–269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, Chinh NT et al (2006) Evolutionary history of Salmonella typhi. Science 314:1301–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sacchi CT, Whitney AM, Reeves MW, Mayer LW, Popovic T (2002) Sequence diversity of Neisseria meningitidis 16S rRNA genes and use of 16S rRNA gene sequencing as a molecular subtyping tool. J Clin Microbiol 40:4520–4527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt C, Turner D, Boesl M, Abele M, Frosch M, Kurzai O (2007) A functional two-partner secretion system contributes to adhesion of Neisseria meningitidis to epithelial cells. J Bacteriol 189:7968–7976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T et al (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci USA 105:3473–3478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoen C, Tettelin H, Parkhill J, Frosch M (2009) Genome flexibility in Neisseria meningitidis. Vaccine 27(Suppl 2):B103–B111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070

    Google Scholar 

  • Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM et al (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51

    PubMed Central  PubMed  Google Scholar 

  • Smith JM, Smith NH, O’Rourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90:4384–4388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith KF, Bibb LA, Schmitt MP, Oram DM (2009) Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae. J Bacteriol 191:1595–1603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944

    CAS  PubMed  Google Scholar 

  • Stein DC, Gunn JS, Radlinska M, Piekarowicz A (1995) Restriction and modification systems of Neisseria gonorrhoeae. Gene 157:19–22

    CAS  PubMed  Google Scholar 

  • Stork M, Bos MP, Jongerius I, de Kok N, Schilders I, Weynants VE et al (2010) An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog 6:e1000969

    PubMed Central  PubMed  Google Scholar 

  • Syvanen M (1985) Cross-species gene transfer; implications for a new theory of evolution. J Theor Biol 112:333–343

    CAS  PubMed  Google Scholar 

  • Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ et al (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    CAS  PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tortosa P, Dubnau D (1999) Competence for transformation: a matter of taste. Curr Opin Microbiol 2:588–592

    CAS  PubMed  Google Scholar 

  • Treangen TJ, Ambur OH, Tonjum T, Rocha EP (2008) The impact of the neisserial DNA uptake sequences on genome evolution and stability. Genome Biol 9:R60

    PubMed Central  PubMed  Google Scholar 

  • van Ulsen P, Rutten L, Feller M, Tommassen J, van der Ende A (2008) Two-partner secretion systems of Neisseria meningitidis associated with invasive clonal complexes. Infect Immun 76:4649–4658

    PubMed Central  PubMed  Google Scholar 

  • Velkov VV (1999) How environmental factors regulate mutagenesis and gene transfer in microorganisms. J Biosci 24:529–559

    CAS  Google Scholar 

  • Vernikos GS (2009) Of trees and networks. Nat Rev Microbiol 7:691

    CAS  PubMed  Google Scholar 

  • Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, Rasko D et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf YI, Aravind L, Grishin NV, Koonin EV (1999) Evolution of aminoacyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9:689–710

    CAS  PubMed  Google Scholar 

  • Wyborn NR, Stapleton MR, Norte VA, Roberts RE, Grafton J, Green J (2004) Regulation of Escherichia coli hemolysin E expression by H-NS and Salmonella SlyA. J Bacteriol 186:1620–1628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Giorgio Corsi for artwork and figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Medini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vernikos, G., Medini, D. (2014). Horizontal Gene Transfer and the Role of Restriction-Modification Systems in Bacterial Population Dynamics. In: Pontarotti, P. (eds) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Springer, Cham. https://doi.org/10.1007/978-3-319-07623-2_8

Download citation

Publish with us

Policies and ethics