Skip to main content

A Preliminary Transcriptomic Study of Galaxiid Fishes Reveals a Larval Glycoprotein Gene Under Strong Positive Selection

  • Chapter
  • First Online:
Book cover Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life

Abstract

We describe protein sequences for a uromodulin-like larval glycoprotein (LGP) from 21 species of galaxiid fishes, with a MRCA about 30 Ma. These have been derived from both genomic DNA and cDNA, by conventional and Roche 454 sequencing. LGP shows a fast rate of evolution and an exceptionally strong signal of positive selection over the entire coding region, as evidenced by d N/d S > 1. Across all sequences, 182/336 (54 %) of residues are variable; many substitutions are profound/nonconservative and include in-frame indels. Genetic distances are, on average, 2.4x larger for coding region (996 bp) than introns (1459 bp).Our initial in situ work shows that the gene is active in developing skin and gill arches, which are likely conduits for pathogens. As ZP-domain proteins have been recently categorized as members of the immunoglobulin superfamily, we believe it is likely that LGP is an immune protein, and that these fishes are engaged in a Red Queen arms race.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol 28:1703

    Article  CAS  PubMed  Google Scholar 

  • Allibone RM, Crowl TA, Holmes JM, King TM, McDowall RM, Townsend CR, Wallis GP (1996) Isozyme analysis of Galaxias species (Teleostei: Galaxiidae) from the Taieri River, South Island, New Zealand: a species complex revealed. Biol J Linn Soc 57:107

    Google Scholar 

  • Allibone RM, Wallis GP (1993) Genetic variation and diadromy in some native New Zealand galaxiids (Teleostei: Galaxiidae). Biol J Linn Soc 50:19

    Article  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729

    Article  PubMed  Google Scholar 

  • Barker JR, Lambert DM (1988) A genetic analysis of populations of Galaxias maculatus from the Bay of Plenty: implications for natal river return. N Z J Mar Freshw Res 22:321

    Article  CAS  Google Scholar 

  • Benzie V (1968) The life history of Galaxias vulgaris Stokell, with a comparison with G. maculatus attenuatus. N Z J Mar Freshw Res 2:628

    Google Scholar 

  • Berlin S, Qu L, Ellegren H (2008) Adaptive evolution of gamete-recognition proteins in birds. J Mol Evol 67:488

    Article  CAS  PubMed  Google Scholar 

  • Berra TM (2007) Freshwater fish distribution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Berra TM, Crowley LELM, Ivantsoff W, Fuerst PA (1996) Galaxias maculatus: an explanation of its biogeography. Mar Freshw Res 47:845

    Article  Google Scholar 

  • Bishop P (1995) Drainage rearrangement by river capture, beheading and diversion. Prog Phys Geogr 19:449

    Article  Google Scholar 

  • Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland MA, pp 62–88

    Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 76:1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burridge CP, Craw D, Jack DC, King TM, Waters JM (2008) Does fish ecology predict dispersal across a river drainage divide? Evolution 62:1484

    Article  PubMed  Google Scholar 

  • Burridge CP, Craw D, Waters JM (2006) River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance. Evolution 60:1038

    Article  CAS  PubMed  Google Scholar 

  • Burridge CP, Craw D, Waters JM (2007) An empirical test of freshwater vicariance via river capture. Mol Ecol 16:1883

    Article  PubMed  Google Scholar 

  • Burridge CP, McDowall RM, Craw D, Wilson MVH, Waters JM (2012) Marine dispersal as a pre-requisite for Gondwanan vicariance among elements of the galaxiid fish fauna. J Biogeogr 39:306

    Article  Google Scholar 

  • Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Todd Hubisz M, Glanowski S, Tanenbaum DM, White TJ, Sninsky JJ, Hernandez RD, Civello D, Adams MD, Cargill M, Clark AG (2005) Natural selection on protein-coding genes in the human genome. Nature 437:1153

    Article  CAS  PubMed  Google Scholar 

  • Calkins JD, El-Hinn D, Swanson WJ (2007) Adaptive evolution in an avian reproductive protein: ZP3. J Mol Evol 65:555

    Article  CAS  PubMed  Google Scholar 

  • Closs GP, Hicks AS, Jellyman PG (2013) Life histories of closely related amphidromous and non-migratory fish species: a trade-off between egg size and fecundity. Freshw Biol 58:1162

    Article  Google Scholar 

  • Craw D, Burridge C, Waters J (2007) Geological and biological evidence for drainage reorientation during uplift of alluvial basins, central Otago, New Zealand. N Z J Geol Geophys 50:367

    Article  Google Scholar 

  • Craw D, Burridge CP, Upton P, Rowe DL, Waters JM (2008) Evolution of biological dispersal corridors through a tectonically active mountain range in New Zealand. J Biogeogr 35:1790

    Article  Google Scholar 

  • Craw D, Nelson E, Koons PO (2003) Structure and topographic evolution of the Main Divide in the Landsborough-Hopkins area of the Southern Alps, New Zealand. N Z J Geol Geophys 46:553

    Article  Google Scholar 

  • Croizat L, Nelson G, Rosen DE (1974) Centers of origin and related concepts. Syst Zool 23:265

    Article  Google Scholar 

  • Crowl TA, Townsend CR, McIntosh AR (1992) The impact of introduced brown and rainbow trout on native fish: the case of Australasia. Rev Fish Biol Fish 2:217

    Article  Google Scholar 

  • Darwin C (1872) The origin of species by means of natural selection. J M Dent & Sons Ltd, London

    Google Scholar 

  • Derome N, Bernatchez L (2006) The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae). Mol Biol Evol 23:2370

    Article  CAS  PubMed  Google Scholar 

  • Fay JC, Wyckoff GJ, Wu CI (2002) Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415:1024

    Article  CAS  PubMed  Google Scholar 

  • Gerrard DT, Meyer A (2007) Positive selection and gene conversion in SPP120, a fertilization-related gene, during the East African cichlid fish radiation. Mol Biol Evol 24:2286

    Article  CAS  PubMed  Google Scholar 

  • Graham IJ (2008) A continent on the move: New Zealand geoscience into the 21st century. The Geological Society of New Zealand in association with GNS Science, Wellington, p 388

    Google Scholar 

  • Graur D, Li W-H (2000) Fundamentals of molecular evolution. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Hellberg ME, Dennis AB, Arbour-Reily P, Aagaard JE, Swanson WJ (2012) The Tegula tango: a co-evolutionary dance of interacting, positively-selected sperm and egg proteins. Evolution 66:1681

    Article  CAS  PubMed  Google Scholar 

  • Hicks AS, Closs GP, Swearer SE (2010) Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: a multi-element approach for tracking diadromous migrations. J Exp Mar Biol Ecol 394:86

    Article  Google Scholar 

  • Hicks AS, Waters JM, David B, Norman MD, Closs GP (submitted) Retention of pelagic larvae drives population dynamics in a widespread migratory fish. Oecologia

    Google Scholar 

  • Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995

    Article  PubMed  Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford Univeristy Press, New York

    Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167

    Article  CAS  PubMed  Google Scholar 

  • Jovine L, Darie CC, Litscher ES, Wassarman PM (2005) Zona pellucida domain proteins. Annu Rev Biochem 74:83

    Article  CAS  PubMed  Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107

    Article  CAS  PubMed  Google Scholar 

  • Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4:e1000304

    Article  PubMed Central  PubMed  Google Scholar 

  • Li W-H (1997) Molecular evolution. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Ling N, Gleeson DM (2001) A new species of mudfish, Neochanna (Teleostei: Galaxiidae), from northern New Zealand. J R Soc NZ 31:385

    Article  Google Scholar 

  • Mayden RL (1988) Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Syst Zool 37:329

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • McDowall RM (1968) The status of Nesogalaxias neocaledonicus (Weber and De Beaufort) (Pisces: Galaxiidae). Breviora Mus Comp Zool 286:1

    Google Scholar 

  • McDowall RM (1971) The galaxiid fishes of South America. Zool J Linnean Soc 50:33

    Article  Google Scholar 

  • McDowall RM (1973) The status of the South African galaxiid (Pisces, Galaxiidae). Ann Cape Prov Mus (Natural History) 9:91

    Google Scholar 

  • McDowall RM (1990) New Zealand freshwater fishes: a natural history and guide. Heinemann Reed, Auckland

    Google Scholar 

  • McDowall RM (1992) Diadromy: origins and definitions of terminology. Copeia 1992:248

    Article  Google Scholar 

  • McDowall RM (1997) Two further new species of Galaxias (Teleostei: Galaxiidae) from the Taieri River, southern New Zealand. J R Soc NZ 27:199

    Article  Google Scholar 

  • McDowall RM (2000) The reed field guide to new zealand freshwater fishes. Reed Publishing, Auckland

    Google Scholar 

  • McDowall RM (2004) The Chatham Islands endemic galaxiid: a Neochanna mudfish (Teleostei: Galaxidae). J R Soc NZ 2004:315

    Article  Google Scholar 

  • McDowall RM (2008) Diadromy, history and ecology: a question of scale. Hydrobiologia 602:5

    Article  Google Scholar 

  • McDowall RM, Chadderton WL (1999) Galaxias gollumoides (Teleostei: Galaxiidae), a new fish species from Stewart Island, with notes on other non-migratory freshwater fishes present on the island. J R Soc NZ 29:77

    Article  Google Scholar 

  • McDowall RM, Frankenberg RS (1981) The galaxiid fishes of Australia. Rec Aust Mus 33:443

    Article  Google Scholar 

  • McDowall RM, Wallis GP (1996) Description and redescription of Galaxias species (Teleostei: Galaxiidae) from Otago and Southland. J R Soc NZ 26:401

    Article  Google Scholar 

  • McDowall RM, Waters JM (2002) A new longjaw Galaxias species (Teleostei: Galaxiidae) from the Kauru River, North Otago, New Zealand. N Z J Zool 29:41

    Article  Google Scholar 

  • McDowall RM, Waters JM (2003) A new species of Galaxias (Teleostei: Galaxiidae) from the Mackenzie Basin, New Zealand. J R Soc NZ 33:675

    Article  Google Scholar 

  • Meslin C, Mugnier S, Callebaut I, Laurin M, Pascal G, Poupon A, Goudet G, Monget P (2012) Evolution of genes involved in gamete interaction: evidence for positive selection, duplications and losses in vertebrates. PLoS ONE 7:e44548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Messier W, Stewart C-B (1997) Episodic adaptive evolution of primate lysozymes. Nature 385:151

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Jaffe DB, Yang S-P, Enard W, Hellmann I, Lindblad-Toh K, Altheide TK, Archidiacono N, Peer Bork P, Butler J, Chang JL, Cheng Z, Chinwalla AT, deJong P, Delehaunty KD, Fronick CC, Fulton LL, Gilad Y, Glusman G, Gnerre S, Graves TA, Hayakawa T, Hayden KE, Huang X, Ji H, Kent WJ, King M-C, KulbokasIII EJ, Lee MK, Liu G, Lopez-Otin C, Makova KD, Man O, Mardis ER, Mauceli E, Miner TL, Nash WE, Nelson JO, Pa¨a¨bo S, Patterson NJ, Pohl CS, Pollard KS, Pru¨fer K, Puente XS, Reich D, Rocchi M, Rosenbloom K, Ruvolo M, Richter DJ, Schaffner SF, Smit AFA, Smith SM, Suyama M, Taylor J, Torrents D, Tuzun E, Varki A, Velasco G, Ventura M, Wallis JW, Wendl MC, Wilson RK, Lander ES, Waterston RH (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69

    Google Scholar 

  • Monné M, Han L, Schwend T, Burendahl S, Jovine L (2008) Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature 456:653

    Article  PubMed  Google Scholar 

  • Mori T, Kawachi H, Imai C, Sugiyama M, Kurata Y, Kishida O, Nishimura K (2009) Identification of a novel uromodulin-like gene related to predator-induced bulgy morph in anuran tadpoles by functional microarray analysis. PLoS ONE 4:e5936

    Article  PubMed Central  PubMed  Google Scholar 

  • Mortimer N, Wopereis P (1997) Change in direction of the Pelorus River, Marlborough, New Zealand: evidence from composition of Quaternary gravels. N Z J Geol Geophys 40:307

    Article  Google Scholar 

  • Nei M (2005) Selectionism and neutralism in molecular evolution. Mol Biol Evol 22:2318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418

    CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Nosil P, Schluter D (2011) The genes underlying the process of speciation. Trends Ecol Evol 26:160

    Article  PubMed  Google Scholar 

  • Pagel M, Pomiankowski A (2008) Evolutionary genomics and proteomics. MA, Sinauer, Sunderland, p 351

    Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568

    CAS  PubMed  Google Scholar 

  • Plotkin JB, Dushoof J, Fraser HB (2004) Detecting selection using a single genome sequence of M. tuberculosis and P. falciparum. Nature 428:942

    Article  CAS  PubMed  Google Scholar 

  • Plouffe DA, Hanington PC, Walsh JG, Wilson EC, Belosevic M (2005) Comparison of select innate immune mechanisms of fish and mammals. Xenotransplantation 12:266

    Article  PubMed  Google Scholar 

  • Pole M (1994) The New Zealand flora—entirely long-distance dispersal? J Biogeogr 21:625

    Article  Google Scholar 

  • Poulin R, Closs GP, Lill AWT, Hicks AS, Herrmann KK, Kelly DW (2012) Migration as an escape from parasitism in New Zealand galaxiid fishes. Oecologia 169:955

    Article  PubMed  Google Scholar 

  • Rosen DE (1978) Vicariant patterns and historical explanation in biogeography. Syst Zool 27:159

    Article  Google Scholar 

  • Säemann MD, Weichhart T, Hörl WH, Zlabinger GJ (2005) Tamm-Horsfall protein: a multilayered defence molecule against urinary tract infection. Eur J Clin Investig 35:227

    Article  Google Scholar 

  • Singh RS, Xu J, Kulanthinal RJ (2012) Rapidly evolving genes and genetic systems. Oxford University Press, Oxford, p 288

    Book  Google Scholar 

  • Stewart C-B, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330:401

    Article  CAS  PubMed  Google Scholar 

  • Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18

    Article  CAS  PubMed  Google Scholar 

  • Swanson WJ, Vacquier VD (2002) Reproductive protein evolution. Annu Rev Ecol Syst 33:161

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4. Mol Biol Evol 24:1596

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka T, Nei M (1989) Positive darwinian selection observed at the variable-region genes of immunoglobulins. Mol Biol Evol 6:447

    CAS  PubMed  Google Scholar 

  • Turner LM, Hoekstra HE (2006) Adaptive evolution of fertilization proteins within a genus: variation in ZP2 and ZP3 in deer mice (Peromyscus). Mol Biol Evol 23:1656

    Article  CAS  PubMed  Google Scholar 

  • van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, Oxford

    Google Scholar 

  • Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194

    Article  CAS  PubMed  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636

    Article  CAS  PubMed  Google Scholar 

  • Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent. Mol Ecol 18:3548

    Article  PubMed  Google Scholar 

  • Wallis LJ, Wallis GP (2011) Extreme positive selection on a new highly-expressed larval glycoprotein (LGP) gene in Galaxias fishes (Osmeriformes: Galaxiidae). Mol Biol Evol 28:399

    Article  CAS  PubMed  Google Scholar 

  • Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213

    Article  Google Scholar 

  • Waters JM, Allibone RM, Wallis GP (2006) Geological subsidence, river capture, and cladogenesis of galaxiid fish lineages in central New Zealand. Biol J Linn Soc 88:367

    Article  Google Scholar 

  • Waters JM, Craw D (2006) Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Syst Biol 55:351

    Article  PubMed  Google Scholar 

  • Waters JM, Craw D, Youngson JH, Wallis GP (2001a) Genes meet geology: fish phylogeographic pattern reflects ancient, rather than modern, drainage connections. Evolution 55:1844

    Article  CAS  PubMed  Google Scholar 

  • Waters JM, Dijkstra LH, Wallis GP (2000a) Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal? Mol Ecol 9:1815

    Article  CAS  PubMed  Google Scholar 

  • Waters JM, Esa YB, Wallis GP (2001b) Genetic and morphological evidence for reproductive isolation between sympatric populations of Galaxias (Teleostei: Galaxiidae) in South Island, New Zealand. Biol J Linn Soc 73:287

    Article  Google Scholar 

  • Waters JM, López JA, Wallis GP (2000b) Molecular phylogenetics and biogeography of galaxiid fishes (Osteichthyes: Galaxiidae): dispersal, vicariance, and the position of Lepidogalaxias salamandroides. Syst Biol 49:777

    Article  CAS  PubMed  Google Scholar 

  • Waters JM, McDowall RM (2005) Phylogenetics of the Australasian mudfishes: evolution of an eel-like body plan. Mol Phylogenet Evol 37:417

    Article  CAS  PubMed  Google Scholar 

  • Waters JM, Rowe DL, Burridge CP, Wallis GP (2010) Gene trees versus species trees: reassessing life-history evolution in a freshwater fish radiation. Syst Biol 59:504

    Article  CAS  PubMed  Google Scholar 

  • Waters JM, Saruwatari T, Kobayashi T, Oohara I, McDowall RM, Wallis GP (2002) Phylogenetic placement of retropinnid fishes: data set incongruence can be reduced by using asymmetric character state transformation costs. Syst Biol 51:432

    Article  PubMed  Google Scholar 

  • Waters JM, Wallis GP (2001a) Cladogenesis and loss of the marine life history phase in freshwater galaxiid fishes (Osmeriformes: Galaxiidae). Evolution 55:587

    Article  CAS  PubMed  Google Scholar 

  • Waters JM, Wallis GP (2001b) Mitochondrial DNA phylogenetics of the Galaxias vulgaris complex from South Island, New Zealand: rapid radiation of a species flock. J Fish Biol 58:1166

    Article  CAS  Google Scholar 

  • Winkworth RC, Wagstaff SJ, Glenny D, Lockhart PJ (2002) Plant dispersal N.E.W.S. from New Zealand. Trends Ecol Evol 17:514

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham P. Wallis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wallis, G.P., Wallis, L.J. (2014). A Preliminary Transcriptomic Study of Galaxiid Fishes Reveals a Larval Glycoprotein Gene Under Strong Positive Selection. In: Pontarotti, P. (eds) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Springer, Cham. https://doi.org/10.1007/978-3-319-07623-2_3

Download citation

Publish with us

Policies and ethics