Skip to main content

The mother planet and its magnetosphere

  • Chapter
  • First Online:
The Cassini-Huygens Visit to Saturn

Part of the book series: Springer Praxis Books ((SPACEE))

  • 1711 Accesses

Abstract

Planetary exploration opens a window into the natures of worlds other than Earth, and this can give us a better sense of our own position in the scheme of things. At times, we realize that long-held beliefs must be changed. For instance on Earth, the weather is thought of as highly changeable and inconstant. A storm refers to a short-lived atmospheric phenomenon, typically hours or days in length. Not so on Saturn. Comparing Cassini Orbiter with Voyager data demonstrates that certain Saturnian tempests have lasted for decades, at least.1 And while cloud formations in Earth’s atmosphere are notably transient, on Saturn they endure indefinitely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saturn is not the only planet we know that displays such long lived phenomena. Observations of Jupiter also demonstrate long term persistence of many of its weather patterns.

    Google Scholar 

  2. “Cassini-Huygens Project,” http://www.tepapa.govt.nz/space/Cassini.htm#Saturn, Museum of New Zealand, accessed 10 May 2011.

  3. John D. Anderson1 and Gerald Schubert, “Saturn’s Gravitational Field, Internal Rotation, and Interior Structure,” Science 317 (7 September 2007):1384–1387.

    Google Scholar 

  4. ESA, “Facts About Saturn,” http://www.esa.int/esaMI/Cassini-Huygens/SEMV75HHZTD_0.html, accessed 26 Sep. 2009.

  5. National Air and Space Museum, “Pioneer Encounters Saturn,” http://www.nasm.si.edu/etp/saturn/satpioneer.html (2002), accessed 26 Sep. 2009.

  6. E. C. Stone et al., “Voyager 1 Encounter with the Saturnian System,” Science 212 (10 April 1981):159–163.

    Google Scholar 

  7. Thierry Fouchet et al., “Saturn: Composition and Chemistry,” chapter 5 in Michele K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, (Springer, 2009), p. 83.

    Google Scholar 

  8. Michele K. Dougherty et al., “Overview,” chapter 1 in Michele K. Dougherty et al. (eds.), Saturn from Cassini-Huygens (Springer, 2009):10.

    Google Scholar 

  9. David R. Williams, “Saturn Fact Sheet,” http://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html, NASA-GSFC, updated 17 November 2010.

  10. Anthony D. Del Genio, “Saturn Atmospheric Structure and Dynamics,” chapter 6 in Michele K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, (Springer, 2009):118; ESA, “Saturn’s Atmosphere,” http://www.esa.int/esaMI/Cassini-Huygens/SEMPQ6HHZTD_0.html, accessed 27 Sep. 2009.

  11. Del Genio, “Saturn Atmospheric Structure and Dynamics.”

    Google Scholar 

  12. Fouchet, “Saturn: Composition and Chemistry.”

    Google Scholar 

  13. Del Genio 2009, p. 122.

    Google Scholar 

  14. Andy Ingersoll interview with author, 17 Dec. 2009, American Geophysical Union (AGU) conference, San Francisco.

    Google Scholar 

  15. Linda Spilker review of manuscript, March 2011.

    Google Scholar 

  16. Ingersoll interview, 17 Dec. 2009.

    Google Scholar 

  17. Anthony D. Del Genio et al., “Saturn Eddy Momentum Fluxes and Convection: First Estimates from Cassini Images,” Icarus 189 (2007):479–492; Andrew Ingersoll email to author, 21 Sep. 2010.

    Google Scholar 

  18. Andy Ingersoll interview with author, 17 Dec. 2009, American Geophysical Union (AGU) conference, San Francisco.

    Google Scholar 

  19. Andrew P. Ingersoll, “Jupiter and Saturn,” in J. Kelly Beatty et al. (eds.), The New Solar System, 2nd edition (Cambridge University Press and Sky Publishing Corporation, 1982), pp. 124–125.

    Google Scholar 

  20. Ingersoll interview, 17 Dec. 2009.

    Google Scholar 

  21. Photochemistry refers to the effects of light (in Saturn’s case, sunlight) on chemical systems.

    Google Scholar 

  22. D.F. Strobel, “The Photochemistry of Methane in the Jovian Atmosphere,” J. Atmos. Sci. 26 (1969):906–911.

    Article  Google Scholar 

  23. Luke Moore and Michael Medill, “Are Plasma Depletions in Saturn’s Ionosphere a Signature of Time Dependent Water Input?” Geophys. Research Ltrs. 34 (2007):L12202; Luke Moore et al., “Cassini Radio Occultations of Saturn’s Ionosphere: Model Comparisons Using a Constant Water Flux,” Geophys. Research Ltrs. 33 (2006):L22202.

    Google Scholar 

  24. Patrick G. J. Irwin, “Giant Planets of Our Solar System: an Introduction,” Springer (21 March 2006).

    Google Scholar 

  25. ESA, “Saturn’s Atmosphere,” http://www.esa.int/esaMI/Cassini-Huygens/SEMPQ6HHZTD_0.html, accessed 27 Sep. 2009; NASA-JPL, “A Gas Giant with Super-Fast Winds,” http://www.nasa.gov/mission_pages/cassini/whycassini/planet.html, (26 May 2004).

  26. C.C. Porco et al., “Cassini Imaging Science: Initial Results on Saturn’s Atmosphere,” Science 307 (25 Feb. 2005):1243–1247.

    Google Scholar 

  27. Enrique García-Melendo et al., “Numerical Models of Saturn’s Long-Lived Anticyclones,” Icarus 191 (2007):665–677; NASA, “Large Brown Spot in Saturn’s Atmosphere,” http://www.nasaimages.org/luna/servlet/detail/nasaNAS~4~4~13513~115739:Large-brown-spot-in-Saturn-s-atmosp, NASA Planetary Photo Journal Collection, image no. PIA0196, acquired August 1981 and added to collection on 28 Apr. 1999.

    Google Scholar 

  28. Carolyn Porco, “Cassini Sees Inner Workings in the Eye of a Saturn Cyclone,” cpcomments@ciclops.org, Cassini Imaging Central Laboratory for Operations (CICLOPS), Space Science Institute, Boulder CO (13 October 2008); Ulyana A. Dyudina et al., “Saturn’s South Polar Vortex Compared to Other Large Vortices in the Solar System,” Icarus 202(1) (2009).

    Google Scholar 

  29. Carolina Martinez, “Giant Cyclones at Saturn’s Poles Create a Swirl of Mystery,” NASA News, image advisory 2008–192 (13 Oct. 2008).

    Google Scholar 

  30. Anthony D. Del Genio, “Saturn Atmospheric Structure and Dynamics,” chapter 6 in Michele K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, (Springer, 2009), p. 122.

    Google Scholar 

  31. B. Marty et al., “Croons: Exploring the Depths of Saturn with Probes and Remote Sensing Through an International Mission” Exp. Astron. 23 (2009):952.

    Google Scholar 

  32. Andrew Ingersoll email to author, 21 Sep. 2010.

    Google Scholar 

  33. Andy Ingersoll interview with author, 17 Dec. 2009, American Geophysical Union (AGU) conference, San Francisco.

    Google Scholar 

  34. Jia-Rui C. Cook and J.D. Harrington, “Flash: NASA’s Cassini Sees Lightning on Saturn,” http://www.jpl.nasa.gov/news/news.cfm?release=2010-129&cid=release_2010-129&msource=2010129&tr=y&auid=6206677, JPL press release 2010–129 (14 Apr. 2010).

  35. NASA, “Spotting Saturn’s Northern Storm,” http://www.nasa.gov/mission_pages/cassini/multimedia/pia12824.html, updated 6 July 2011; Tammy Plotner, “The Sights And Sounds of Saturn’s Super Storm,” http://www.universetoday.com/87269/the-sights-and-sounds-of-saturns-super-storm/ (7 July 2011).

  36. Linda Spilker review of manuscript, March 2011.

    Google Scholar 

  37. Georg Fischer et al., “Atmospheric Electricity at Saturn,” Space Sci Rev. 137 (2008): 271–285.

    Google Scholar 

  38. John Roach, “Saturn Lightning Storm Breaks Solar System Record,” http://news.nationalgeographic.com/news/2009/09/090915-saturn-lightning-storms.html, National Geographic News (15 Sep. 2009).

  39. Anita Heward and Eleni Chatzichristou, “Longest Lightning Storm on Saturn Breaks Solar System Record,” http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=141&Itemid=1, Europlanet Web site (accessed 29 Sep. 2009).

  40. Bob Mitchell review of manuscript, Feb. 2011.

    Google Scholar 

  41. Both quotes in the paragraph are from Jia-Rui C. Cook and J.D. Harrington, “Flash: NASA’s Cassini Sees Lightning on Saturn,” http://www.jpl.nasa.gov/news/news.cfm?release=2010-129&cid=release_2010-129&msource=2010129&tr=y&auid=6206677, JPL press release 2010–129 (14 Apr. 2010).

  42. Andrew Ingersoll email to author, 21 Sep. 2010.

    Google Scholar 

  43. Fraser Cain, “Formation of Saturn,” http://www.universetoday.com/guide-to-space/saturn/formation-of-saturn/, Universe Today Web site (3 July 2008).

  44. Cain, “Formation of Saturn.”

    Google Scholar 

  45. Tompa, “Jupiter and Saturn Full of Liquid Metal Helium.”

    Google Scholar 

  46. Rachel Tompa, “Jupiter and Saturn Full of Liquid Metal Helium,” http://berkeley.edu/news/media/releases/2008/08/06_helium.shtml, press release, UC Berkeley News (6 Aug. 2008); Lars Stixrude and Raymond Jeanloz, “Fluid Helium at Conditions of Giant Planetary Interiors,” Proc. of Natl. Acad. of Sci. 105(32) (12 Aug. 2008):11071–11075.

  47. William B. Hubbard et al., “The Interior of Saturn,” chapter 4 in Michele K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, (Springer, 2009), p. 75; ESA, “Facts About Saturn,” http://www.esa.int/esaMI/Cassini-Huygens/SEMV75HHZTD_0.html, accessed 27 Sep. 2009; Windows to the Universe team, “The Composition of Saturn’s Interior,” http://www.windows.ucar.edu, Boulder, CO: © The Regents of the University of Michigan, (9 Apr. 1997).

  48. Andrew Ingersoll, “Saturn Interior and Atmosphere,” http://saturn.jpl.nasa.gov/files/20090630_CHARM_Ingersoll.pdf, CHARM Telecon presentation, 30 June 2009, originally presented at Cassini Solstice Mission Senior Review, 10 February 2009.

  49. William B. Hubbard et al., “The Interior of Saturn,” Chapter 4 in Michele K. Dougherty et al. (eds.) Saturn from Cassini-Huygens (Netherlands: Springer, 2009), pp. 75, 80.

    Google Scholar 

  50. William B. Hubbard et al., “The Interior of Saturn,” in Saturn from Cassini-Huygens (Netherlands: Springer, 2009); Keith Refson, “FPS0: First Principles Simulation,” http://www.ccp5.ac.uk/SSCCP5/FPS/fps0.html, Collaborative Computational Project 5 - The Computer Simulation of Condensed Phases, Science & Technologies Facilities Council, U.K., lecture notes from the CASTEP workshop held in 2007.

  51. Adam P. Showman, “Windy Clues to Saturn’s Spin,” Nature 460 (30 July 2009):582.

    Google Scholar 

  52. P. L. Read et al., “Saturn’s Rotation Period from its Atmospheric Planetary-Wave Configuration,” Nature 460 (30 July 2009):608; Particle Physics & Astronomy Research Council, “How Long Is A Day On Saturn?” ScienceDaily http://www.sciencedaily.com /releases/2006/05/060503202834.htm (3 May 2006), accessed 30 September 2009.

  53. Both quotes in this paragraph are from Andy Ingersoll interview by author, Rome, Italy, 12 June 2008.

    Google Scholar 

  54. Geological Survey of Canada, “Geomagnetism: Earth’s Magnetic Field,” http://gsc.nrcan.gc.ca/geomag/field/index_e.php , last modified 16 Jan. 2008, accessed 12 Sept. 2008; Cambridge University Press, Cambridge University Press, “Book Resources,” http://www.cambridge.org/resources/0521546206/678_s283b1f6_04.pdf , accessed 12 Sept. 08.

  55. Particle Physics & Astronomy Research Council, “How Long Is A Day On Saturn?” ScienceDaily http://www.sciencedaily.com/releases/2006/05/060503202834.htm (3 May 2006), accessed 30 September 2009.

  56. Amy Callaghan , “Day Length on Saturn Gets a Bit Shorter,” http://www.cosmosmagazine.com/news/2893/a-day-saturn-gets-a-bit-shorter?page=0%2C0, Cosmos (30 July 2009), accessed 30 Sep. 2009.

  57. JPL, “Spacecraft: Cassini Orbiter Instruments - MAG.”

    Google Scholar 

  58. Callaghan , “Day Length on Saturn.”

    Google Scholar 

  59. P.L. Read et al., “Saturn’s Rotation Period from its Atmospheric Planetary-Wave Configuration,” Nature 460 (2009):608–610; Callaghan, “Day Length on Saturn.”

    Google Scholar 

  60. D. Gurnett et al, “Discovery of a North–south Asymmetry in Saturn’s Radio Rotation Period,” Geophys. Res. Letters 36 (2009):L16102.

    Article  Google Scholar 

  61. NASA-JPL, “Two-Timing Saturn,” http://saturn.jpl.nasa.gov/news/cassiniscienceleague/science20090923/, Cassini Equinox Mission Web site (2009).

  62. Claudia Alexander, “Saturn’s Magnetosphere: Five Times a CHARM,” http://saturn.jpl.nasa.gov/files/20090630_CHARM_Alexander_VerB.pdf, California Institute of Technology presentation (July 2009).

  63. Linda J. Spilker (ed.), “Passage to a Ringed World,” NASA SP-533 (Washington D.C.: NASA, Oct. 1997), p. 67.

    Google Scholar 

  64. Spilker, “Passage to a Ringed World,” p. 69.

    Google Scholar 

  65. E. C. Stone et al., “Voyager 1 Encounter with the Saturnian System,” Science 212 (10 April 1981):159–163.

    Google Scholar 

  66. E. C. Stone et al., “Voyager 2 Encounter with the Saturnian System,” Science 215 (1982):499–504.

    Article  Google Scholar 

  67. Margaret Galland Kivelson, “The Current Systems of the Jovian Magnetosphere and Ionosphere and Predictions for Saturn,” Space Science Reviews 116 (January 2005):299–318.

    Google Scholar 

  68. ESA, “Saturn’s Magnetosphere,” http://www.esa.int/esaMI/Cassini-Huygens/SEMBJCHHZTD_0.html, accessed 3 Oct. 2009.

  69. European Planetology Network, “Saturn’s Skewed Ring Current,” ScienceDaily (26 Aug. 2007); Johns Hopkins University, “Saturn’s Invisible Ring,” http://www.astronomy.com/asy/default.aspx?c=a&id=6389#, Astronomy (13 Dec. 2007).

    Google Scholar 

  70. S. Kellett et al., “Thickness of Saturn’s Ring Current Determined from North‐South Cassini Passes Through the Current Layer,” J. Geophys. Res. 114 (23 April 2009):A04209.

    Google Scholar 

  71. European Planetology Network, “Saturn’s Skewed Ring Current.”

    Google Scholar 

  72. Joe Mason and Jia-Rui C. Cook, “Cassini Captures Ghostly Dance of Saturn’s Northern Lights,” http://ciclops.org/view.php?id=6012, Media Relations Office, Cassini Imaging Central Laboratory for Operations (CICLOPS), Space Science Institute, Boulder CO (24 Nov. 2009).

  73. W.S. Kurth et al., “Auroral Processes,” chapter 12 in Michele K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, (Springer, 2009), pp. 333–370; J.T. Clarke et al., “Morphological Differences Between Saturn’s Ultraviolet Aurorae and Those of Earth and Jupiter,” Nature 433 (17 Feb. 2005):717–719; J.T. Clarke et al., “Response of Jupiter’s and Saturn’s Auroral Activity to the Solar Wind,” Journal of Geophysical Research 114(A5) (1 May 2009); Andrew Ingersoll email to author, 15 Oct. 2010.

    Google Scholar 

  74. Michael D. Desch, “Evidence for Solar Wind Control of Saturn Radio Emission,” J. of Geo. Res. 87 (1 June 1982):4549–4554.

    Google Scholar 

  75. ESA, “Saturn’s Magnetosphere.”

    Google Scholar 

  76. W.S. Kurth et al., “An Earth-Like Correspondence Between Saturn’s Auroral Features and Radio Emission ,” Nature 433 (17 Feb. 2005):722–725; Europlanet Research Infrastructure, “Solar Wind influence on Saturn Kilometric Radiation,” http://europlanet-plasmanode.oeaw.ac.at/index.php?id=268, accessed 4 Oct. 2009; D.A. Gurnett et al., “The Cassini Radio and Plasma Wave Investigation,” Space Science Reviews 114 (2004):395–463.

    Google Scholar 

  77. H.O. Rucker et al., “Saturn Kilometric Radiation as a Monitor to the Solar Wind?” Advances in Space Research 42(1) (2008); L. Lamy et al., “Saturn Kilometric Radiation: Average and Statistical Properties” J. Geophys. Res. 113 (2008):A07201.

    Google Scholar 

  78. D. A. Gurnett, “Radio and Plasma Wave Observations at Saturn from Cassini’s Approach and First Orbit,” Science 307 (25 February 2005):1255–1259.

    Google Scholar 

  79. D. A. Gurnett, “Radio and Plasma Wave Observations at Saturn from Cassini’s Approach and First Orbit,” Science 307 (25 February 2005):1255–1259.

    Google Scholar 

  80. N. Achilleos et al., “Large-Scale Dynamics of Saturn’s Magnetopause : Observations by Cassini,” Journal of Geophysical Research 113 (2008): A11209.

    Article  Google Scholar 

  81. R.E. Hartle, “Interaction of Titan’s Atmosphere with Saturn’s Magnetosphere,” Advances in Space Research 5 (1985):321–332; S.A. Ledvina, “Titan’s Induced Magnetosphere,” Advances in Space Research 33 (2004):2092–2102.

    Google Scholar 

  82. S.A. Ledvina, “Titan’s Induced Magnetosphere,” Advances in Space Research 33 (2004):2092–2102; Norbert Krupp, “Energetic Particles in the Magnetosphere of Saturn and a Comparison With Jupiter,” Space Science Reviews 116 (January 2005):345–369.

    Google Scholar 

  83. J.A. Van Allen et al., “The Energetic Charged Particle Absorption Signature of Mimas,” J. Geophys. Res. 85(A11) (1980):5709–5718.

    Article  Google Scholar 

  84. C. Paranicas et al., “Sources and Losses of Energetic Protons in Saturn’s Magnetosphere,” Icarus 197 (2008):519–525.

    Article  Google Scholar 

  85. E. C. Stone et al., “Voyager 1 Encounter with the Saturnian System,” Science 212 (10 April 1981):159–163; M.L. Kaiser et al., “Voyager Detection of Nonthermal Radio Emission from Saturn,” Science 209 (12 Sept. 1980):1238.

    Google Scholar 

  86. J. L. Burch, “Tethys and Dione as Sources of Outward-Flowing Plasma in Saturn’s Magnetosphere,” Nature 447 (14 June 2007):833–835.

    Google Scholar 

  87. ESA, “Saturn’s Magnetosphere,” http://www.esa.int/esaMI/Cassini-Huygens/SEMBJCHHZTD_0.html, accessed 27 Sep. 2009.

  88. R. L. Tokar, “The Interaction of the Atmosphere of Enceladus with Saturn’s Plasma,” Science 311 (10 March 2006):1409–1412.

    Google Scholar 

  89. Royal Astronomical Society, “Charged Dust From Inside Saturn’s Moon Enceladus,” http://www.sciencedaily.com/releases/2009/04/090422085841.htm, ScienceDaily (25 Apr. 2009).

  90. D. N. Baker et al., Solar Dynamics and Its Effects on the Heliosphere and Earth (Dordrecht, The Netherlands: Springer, 6 April 6 2007), pp. 123–124.

    Google Scholar 

  91. Margaret Galland Kivelson, et al., “Does Enceladus Govern Magnetospheric Dynamics at Saturn?” Science 311 (10 March 2006):1391–1392; Krishan Khurana email to author, 21 Oct. 2010.

    Google Scholar 

  92. G. H. Jones, “Enceladus’ Varying Imprint on the Magnetosphere of Saturn,” Science 311 (10 March 2006):1412–1415.

    Google Scholar 

  93. M. Bouhram et al., “The Enceladus Satellite as a Source of N+ ions in Saturn’s Magnetosphere,” Comptes Rendus Physique 6 (2005):1176–1181.

    Article  Google Scholar 

  94. Linda Spilker email to author, 31 Dec. 2013.

    Google Scholar 

  95. Stamatios Krimigis of Johns Hopkins Applied Physics Laboratory, in NASA-JPL, “Cassini Data Help Redraw Shape of Solar System,” http://www.jpl.nasa.gov/news/features.cfm?feature=2337&msource=f20091015&tr=y&auid=5467644 (15 Oct. 2009).

  96. NASA-JPL, “Cassini’s Big Sky: The View from the Center of Our Solar System,” http://www.jpl.nasa.gov/news/features.cfm?feature=2370&msource=F20091119&tr=y&auid=5615216, JPL News & features Web site (19 Nov. 2009).

  97. S. M. Krimigis et al., “Imaging the Interaction of the Heliosphere with the Interstellar Medium from Saturn with Cassini,” http://www.sciencemag.org/cgi/rapidpdf/1181079v1.pdf, Science Express Reports (15 October 2009); Krimigis, “Cassini Data Help Redraw Shape of Solar System.”

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meltzer, M. (2015). The mother planet and its magnetosphere. In: The Cassini-Huygens Visit to Saturn. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-07608-9_11

Download citation

Publish with us

Policies and ethics