Skip to main content

Asymmetric Continuum Theory: Fracture Processes in Seismology and Extreme Fluid Dynamics

  • Chapter
  • First Online:
Book cover Achievements, History and Challenges in Geophysics

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

A new joint approach to deformations and motions in solids and fluids is presented. For the theory of solids, in addition to the shear and rotation strains, we define the molecular transport, while for fluids we consider the transport motions and the shear and rotation molecular strains. In this way we arrive at a common asymmetric theory for solids and fluids. Thus, for solids we present the release-rebound relations and related wave equations for strains, while for fluids we present the Navier-Stokes transport relations; moreover, for solids the included molecular transport and for fluids the molecular rotation and shear strains are considered additionally. The molecular transport in solids helps us to understand the fracture preparation processes. Of course, to each of these continua we include an influence of pressure; thus, in fluids we have both the pressure and its time derivative, that is, the molecular pressure related to sound phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cosserat E, Cosserat F (1909) Théorie des Corps Déformables. A. Hermann et Fils, Paris

    Google Scholar 

  • Droste Z, Teisseyre R (1959) The mechanism of earthquakes according to dislocation theory. Sci Rep Tohoku Univ Ser 5, Geophys 11(1):55–71

    Google Scholar 

  • Eringen AC (1999) Microcontinuum field theories I, foundations and solids. Springer, Berlin, p 325

    Book  Google Scholar 

  • Eringen AC (2001) Microcontinuum field theories II, fluent media. Springer, Berlin, p 340

    Google Scholar 

  • Eringen AC, Suhubi ES (1964) Non-linear theory of simple microelastic solids-1. Int J Eng Sci 2:189–203

    Article  Google Scholar 

  • Eshelby JD, Frank FC, Nabarro FRN (1951) The equilibrium of linear arrays of dislocations. Philos Mag 42:351–364

    Google Scholar 

  • Gomberg J, Agnew DC (1996) The accuracy of seismic estimates of dynamic strains from pinyon flat observatory, California, strainmeter and seismograph data. Bull Seismol Soc Am 86:212–220

    Google Scholar 

  • Kossecka E, DeWitt R (1977) Disclination kinematic. Arch Mech 29:633–651

    Google Scholar 

  • Kröner E (1981) Continuum theory of defect. In: Balian R, Kleman M, Poirer JP (eds) Les Houches, session XXXV, 1980, physics of defects. North Holland, Amsterdam

    Google Scholar 

  • Lee WHK, Celebi M, Todorovska MI, Igel H (2009) Introduction to special issue on rotational seismology and engineering applications. Bull Seismol Soc Am 62(2B):945–957

    Google Scholar 

  • Mindlin RD (1965) On the equations of elastic materials with microstructure. Int J Solid Struct 1(1):73

    Article  Google Scholar 

  • Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press, PWN, Warszawa

    Google Scholar 

  • Peach M, Koehler JS (1950) The forces exerted on dislocations and the stress fields produced by them. Phys Rev 80:436–439

    Article  Google Scholar 

  • Rybicki K (1986) Dislocations and their geophysical applications. In: Teisseyre R (ed) Continuum theories in solid earth physics. Elsevier-PWN, Warsaw, pp 18–186

    Google Scholar 

  • Schreiber KU, Hautman JN, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells J-PR (2009) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Am 99(2B):1190–1198

    Google Scholar 

  • Teisseyre KP (2007) Analysis of a group of seismic events using rotational components. Acta Geophys 55:535–553

    Article  Google Scholar 

  • Teisseyre R (1973) Earthquake processes in a micromorphic continuum. Pure Appl Geophys 102:15–28

    Article  Google Scholar 

  • Teisseyre R (1974) Symmetric micromorphic continuum: wave propagation, point source solutions and some applications to earthquake processes. In: Thoft-Christensen P (ed) Continuum mechanics aspects of geodynamics and rock fracture mechanics, pp 201–244

    Google Scholar 

  • Teisseyre R (1980) Earthquake premonitory sequence—dislocation processes and fracturing. Boll Geofis Teor Appl 22:245–254

    Google Scholar 

  • Teisseyre R (1985a) Creep-flow and earthquake rebound: system of the internal stress evolution. Acta Geophys Pol XXXIII(1):11–23

    Google Scholar 

  • Teisseyre R (1985b) New earthquake rebound theory. Phys Earth Planet Inter 39(1):1–4

    Article  Google Scholar 

  • Teisseyre R (2008a) Introduction to asymmetric continuum: dislocations in solids and extreme phenomena in fluids. Acta Geophys 56:259–269

    Article  Google Scholar 

  • Teisseyre R (2008b) Asymmetric continuum: standard theory. In: Teisseyre R, Nagahama H, Majewski E (eds) Physics of asymmetric continua: extreme and fracture processes. Springer, Berlin, pp 95–109

    Google Scholar 

  • Teisseyre R (2009) Tutorial on new development in physics of rotation motions. Bull Seismol Soc Am 99(2B):1028–1039

    Article  Google Scholar 

  • Teisseyre R (2010) Fluid theory with asymmetric molecular stresses: difference between vorticity and spin equations. Acta Geophys 58(6):1056–1071T

    Article  Google Scholar 

  • Teisseyre R (2011) Why rotation seismology: confrontation between classic and asymmetric theories. Bull Seismol Soc Am 101(4):1683–1691

    Article  Google Scholar 

  • Teisseyre R, Górski M (2009) Fundamental deformations in asymmetric continuum: motions and fracturing. Bull Seismol Soc Am 99(2B):1028–1039

    Article  Google Scholar 

  • Teisseyre R, Górski M (2011) Earthquake fragmentation and slip processes: spin and shear-twist wave mosaic. Acta Geophys 59(3):453–469

    Google Scholar 

  • Teisseyre R, Górski M (2012) Induced strains and defect continuum theory: internal reorganization of load. Acta Geophys 60(1):24–42

    Article  Google Scholar 

  • Teisseyre R, Teisseyre-Jeleńska M (2014) Asymmetric continuum: extreme processes in solids and fluids. GeoPlanet Series, Springer, Berlin

    Google Scholar 

  • Udias A (2002) Theoretical seismology: an introduction. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake & engineering seismology, part a. Academic Press, New York, pp 81–102

    Chapter  Google Scholar 

  • Varotsos P, Alexopoulos K (1984a) Physical properties of the variations of the electric field of the earth preceding earthquakes, I. Tectonophysics 110:73–98

    Google Scholar 

  • Varotsos P, Alexopoulos K (1984b) Physical properties of the variations of the electric field of the earth preceding earthquakes, II. Determination of epicenter and magnitude. Tectonophysics 110:99–125

    Article  Google Scholar 

  • Varotsos P, Alexopoulos K (1986) Thermodynamics of point defects and their relation with the bulk properties. Elsevier Science Ltd, North Holland

    Google Scholar 

  • Zembaty Z (2009) Tutorial on surface rotations from wave passage effects: stochastic approach. Bull Seismol Soc Am 99(2B):1040–1049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Teisseyre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Teisseyre, R. (2014). Asymmetric Continuum Theory: Fracture Processes in Seismology and Extreme Fluid Dynamics. In: Bialik, R., Majdański, M., Moskalik, M. (eds) Achievements, History and Challenges in Geophysics. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-07599-0_21

Download citation

Publish with us

Policies and ethics