Advertisement

Extracting Sentences Describing Biomolecular Events from the Biomedical Literature

  • Tiago NunesEmail author
  • Sérgio Matos
  • José Luís Oliveira
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 290)

Abstract

The scientific literature is one of the main sources of information for researchers. However, due to the rapid increase of the number of scientific articles, satisfying a specific information need has become a very demanding task, and researchers often have to scan through a large number of publications in search of a specific nugget of information. In this work we propose the use of supervised machine learning techniques to retrieve and rank sentences describing different types of biomolecular events. The objective is to classify and rank sentences that match any general query according to the likelihood of mentioning events involving one or more biomolecular entities. These ranked results should provide a condensed, or summarized, view of the knowledge present in the literature and related to the user’s information need.

Keywords

Sentence-based Information Retrieval Biomedical Literature Biomolecular Events 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jensen, L.J., Saric, J., Bork, P.: Literature mining for the biologist: from information retrieval to biological discovery. Nature Reviews Genetics 7(2), 119–129 (2006)CrossRefGoogle Scholar
  2. 2.
    Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Edgar, R., Federhen, S., et al.: Database resources of the national center for biotechnology information. Nucleic Acids Research 35(suppl. 1), D5–D12 (2007)Google Scholar
  3. 3.
    Lu, Z.: PubMed and beyond: a survey of web tools for searching biomedical literature. Database: the Journal of Biological Databases and Curation 2011 (2011)Google Scholar
  4. 4.
    Cafarella, M.J., Downey, D., Soderland, S., Etzioni, O.: Knowitnow: fast, scalable information extraction from the web. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 563–570. Association for Computational Linguistics (2005)Google Scholar
  5. 5.
    Uzuner, Ö., Zhang, X., Sibanda, T.: Machine learning and rule-based approaches to assertion classification. Journal of the American Medical Informatics Association 16(1), 109–115 (2009)CrossRefGoogle Scholar
  6. 6.
    Hripcsak, G., Friedman, C., Alderson, P.O., DuMouchel, W., Johnson, S.B., Clayton, P.D.: Unlocking clinical data from narrative reports: a study of natural language processing. Annals of Internal Medicine 122(9), 681–688 (1995)CrossRefGoogle Scholar
  7. 7.
    Friedman, C., Alderson, P.O., Austin, J.H., Cimino, J.J., Johnson, S.B.: A general natural-language text processor for clinical radiology. Journal of the American Medical Informatics Association 1(2), 161–174 (1994)CrossRefGoogle Scholar
  8. 8.
    Kim, J.-D., Nguyen, N., Wang, Y., Tsujii, J., Takagi, T., Yonezawa, A.: The Genia Event and Protein Coreference tasks of the BioNLP Shared Task 2011. BMC Bioinformatics 13(suppl. 11), S1 (2012)Google Scholar
  9. 9.
    Pyysalo, S., Ohta, T., Rak, R., Sullivan, D., Mao, C., Wang, C., Sobral, B., Tsujii, J., Ananiadou, S.: Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011. BMC Bioinformatics 13(suppl. 11), S2 (2012)Google Scholar
  10. 10.
    Wang, X., McKendrick, I., Barrett, I., Dix, I., French, T., Tsujii, J., Ananiadou, S.: Automatic extraction of angiogenesis bioprocess from text. Bioinformatics 27(19), 2730–2737 (2011)CrossRefGoogle Scholar
  11. 11.
    Campos, D., Matos, S., Oliveira, J.L.: A modular framework for biomedical concept recognition. BMC Bioinformatics 14(1), 281 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tiago Nunes
    • 1
    Email author
  • Sérgio Matos
    • 1
  • José Luís Oliveira
    • 1
  1. 1.DETI/IEETAUniversity of AveiroAveiroPortugal

Personalised recommendations