Advertisement

Scheduling of Mobile Robots with Preemptive Tasks

  • Izabela NielsenEmail author
  • Quang-Vinh Dang
  • Peter Nielsen
  • Pawel Pawlewski
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 290)

Abstract

This paper deals with the problem of scheduling of mobile robots taking into account preemption cases in a flexible manufacturing system (FMS). In addition to capability of transporting materials between some machines, mobile robots are able to perform manufacturing tasks at other machines by using their manipulation arms. These manufacturing tasks can be preempted to allow mobile robots to transport materials when needed. The performance criterion is to minimize time required to complete all tasks, i.e. makespan. A mixed-integer programming (MIP) model is formulated to find the optimal solutions for the problem. Numerical experiments are investigated to demonstrate results of the proposed approach.

Keywords

preemptive scheduling mobile robots mixed-integer programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelmaguid, T.F., Nassef, A.O., Kamal, B.A., Hassan, M.F.: A Hybrid GA/Heuristic Approach to the Simultaneous Scheduling of Machines and Automated Guided Vehicles. Int. J. Prod. Res. 42, 267–281 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bilge, Ü., Ulusoy, G.: A Time Window Approach to Simultaneous Scheduling of Machines and Material Handling System in an FMS. Oper. Res. 43, 1058–1070 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglartz, J.: Scheduling Tasks and Vehicles in a Flexible Manufacturing System. Int. J. Flex. Manuf. Syst. 4, 5–16 (1991)CrossRefGoogle Scholar
  4. 4.
    Bocewicz, G.: Robustness of Multimodal Transportation Networks. Eksploatacja i Niezawodnosc – Maintenance and Reliability 16, 259–269 (2014)Google Scholar
  5. 5.
    Bocewicz, G., Banaszak, Z.: Declarative Approach to Cyclic Steady States Space Refinement: Periodic Processes Scheduling. Int. J. Adv. Manuf. Tech. 67, 137–155 (2013)CrossRefGoogle Scholar
  6. 6.
    Caumond, A., Lacomme, P., Moukrim, A., Tchernev, N.: A MILP for Scheduling Problems in an FMS with One Vehicle. Eur. J. Oper. Res. 199, 706–722 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dang, Q.-V., Nielsen, I.E., Bocewicz, G.: A Genetic Algorithm-based Heuristic for Part-Feeding Mobile Robot Scheduling Problem. In: Rodríguez, J.M.C., Pérez, J.B., Golinska, P., Giroux, S., Corchuelo, R. (eds.) Trends in PAAMS. AISC, vol. 157, pp. 85–92. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Dang, Q.V., Nielsen, I., Steger-Jensen, K.: Scheduling a Single Mobile Robot Incorporated into Production Environment. In: Golinska, P. (ed.) EcoProduction and Logistics. EcoProduction, pp. 185–201. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Deroussi, L., Gourgand, M., Tchernev, N.: A Simple Metaheuristic Approach to the Simultaneous Scheduling of Machines and Automated Guided Vehicles. Int. J. Prod. Res. 46, 2143–2164 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hvilshøj, M., Bøgh, S., Nielsen, O.S., Madsen, O.: Multiple Part Feeding – Real-world Application for Mobile Manipulators. Assemb. Autom. 32, 62–71 (2012)CrossRefGoogle Scholar
  11. 11.
    Lacomme, P., Larabi, M., Tchernev, N.: Job-shop Based Framework for Simultaneous Scheduling of Machines and Automated Guided Vehicles. Int. J. Prod. Econ., 24–34 (2013)Google Scholar
  12. 12.
    Lin, L., Shinn, S.W., Gen, M., Hwang, H.: Network Model and Effective Evolutionary Approach for AGV Dispatching in Manufacturing System. J. Intell. Manuf. 17, 465–477 (2006)CrossRefGoogle Scholar
  13. 13.
    Sitek, P., Wikarek, J.: A Hybrid Method for Modeling and Solving Constrained Search Problems. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 385–392. IEEE Press, Kraków (2013)Google Scholar
  14. 14.
    Soylu, M., Özdemirel, N.E., Kayaligil, S.: A Self-organizing Neural Network Approach for the Single AGV Routing Problem. Eur. J. Oper. Res. 121, 124–137 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ulusoy, G., Sivrikaya-Şerifoǧlu, F., Bilge, Ü.: A Genetic Algorithm Approach to the Simultaneous Scheduling of Machines and Automated Guided Vehicles. Comput. Oper. Res. 24, 335–351 (1997)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Izabela Nielsen
    • 1
    Email author
  • Quang-Vinh Dang
    • 1
  • Peter Nielsen
    • 1
  • Pawel Pawlewski
    • 2
  1. 1.Dept. of Mechanical and Manufacturing EngineeringAalborg UniversityAalborgDenmark
  2. 2.Faculty of Engineering ManagementPoznań University of TechnologyPoznańPoland

Personalised recommendations