DiSEN-AlocaHR: A Multi-Agent Mechanism for Human Resources Allocation in a Distributed Software Development Environment

  • Lucas O. TeixeiraEmail author
  • Elisa H. M. Huzita
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 290)


The success or failure of a project is directly related to individual talent of the participants and, most important, how they are assigned to the tasks in a project. This paper presents a context-aware multi-agent mechanism to support the human resource allocation in globally distributed software projects. This mechanism performs the human resource allocation to tasks of a project taking into account the participants contextual information, the requirements of the tasks and the interpersonal relationship among the human resources. The participants contextual information includes culture, idiom, temporal distance and previous experience. The mechanism is composed by three elements: (i) capture and inference of information, (ii), validation and consolidation of knowledge, and (iii) human resources allocation.


context-awareness ontology global software development human resources allocation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elonen, S., Artto, K.A.: Problems in managing internal development projects in multi-project environments. International Journal of Project Management 21(6), 395–402 (2003)CrossRefGoogle Scholar
  2. 2.
    Huzita, E.H., Tait, T.F., Colanzi, T.E., Quinaia, M.A.: Um ambiente de desenvolvimento distribuído de software-disen. In: I Workshop de Desenvolvimento Distribuído de Software, pp. 31–38 (2007)Google Scholar
  3. 3.
    Holmstrom, H., Conchuir, E.O., Agerfalk, P.J., Fitzgerald, B.: Global software development challenges: A case study on temporal, geographical and socio-cultural distance. In: Proceedings of the IEEE International Conference on Global Software Engineering, pp. 3–11. IEEE Computer Society, Washington, DC (2006)Google Scholar
  4. 4.
    Chaves, A.P., Wiese, I.S., da Silva, C.A., Huzita, E.H.M.: Um modelo baseado em context-awareness para disseminação de informações em um ambiente de desenvolvimento distribuído de software. In: XXXIV Conferencia Latinoamericana de Informáica (CLEI 2008), Santa Fe, Argentina, pp. 1365–1374 (2008)Google Scholar
  5. 5.
    Monte-Alto, H.H., Biasão, A.B., Teixeira, L.O., Huzita, E.H.: Multi-agent and context-aware solutions for a global software development environment. International Journal of Artificial Intelligence 11(A13), 115–129 (2013)Google Scholar
  6. 6.
    Osman, M.S., Abo-Sinna, M.A., Mousa, A.A.: An effective genetic algorithm approach to multiobjective resource allocation problems (moraps). Applied Mathematics and Computation 163(2), 755–768 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Wang, S.Q., Gong, L.H., Yan, S.L.: The allocation optimization of project human resource based on particle swarm optimization algorithm. In: Proceedings of the 2009 IITA International Conference on Services Science, Management and Engineering, pp. 169–172. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, Q., Liu, M.: Optimization of task allocation and knowledge workers scheduling based on ant colony algorithm. In: International Symposium on Intelligence Information Processing and Trusted Computing (IPTC), pp. 386–389. IEEE (2010)Google Scholar
  9. 9.
    Junjie, C., Shating, W., Chen, C.: Method research for dynamic multi-project human resource allocation based on multidimensional model. International Conference on Information Management, Innovation Management and Industrial Engineering 3, 78–81 (2011)Google Scholar
  10. 10.
    Ballesteros-Pérez, P., González-Cruz, M.C., Fernández-Diego, M.: Human resource allocation management in multiple projects using sociometric techniques. International Journal of Project Management 30(8), 901–913 (2012)CrossRefGoogle Scholar
  11. 11.
    Camarinha-Matos, L.M., Afsarmanesh, H.: A framework for virtual organization creation in a breeding environment. Annual Reviews in Control 31(1), 119–135 (2007)CrossRefGoogle Scholar
  12. 12.
    Hofstede, G., Hofstede, G., Minkov, M.: Cultures and Organizations: Software of the Mind, 3rd edn. McGraw-Hill Companies (2010)Google Scholar
  13. 13.
    Katzner, K.: The Languages of the World. Taylor & Francis (2002)Google Scholar
  14. 14.
    Azzeh, M., Neagu, D.C., Cowling, P.I.: Software project similarity measurement based on fuzzy c-means. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 123–134. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Nasir, M., Sahibuddin, S.: Critical success factors for software projects: A comparative study. Scientific Research and Essays 6(10), 2174–2186 (2011)Google Scholar
  16. 16.
    Moreno, J.: Sociometry, experimental method and the science of society: an approach to a new political orientation. Sociometry monographs. Beacon House (1951)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Informatics DepartmentState University of MaringáMaringáBrazil

Personalised recommendations