Advertisement

Hybrid Solution Framework for Supply Chain Problems

  • Paweł SitekEmail author
  • Jarosław Wikarek
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 290)

Abstract

The paper presents application and implementation aspects of a hybrid approach to modeling and optimization for supply chain problems. Two environments of mathematical programming (MP) and constraint programming (CP) were integrated into Hybrid Solution Framework (HSF). The strengths of MP and CP, in which constraints are treated in a different way and different methods are implemented, were combined to use the strengths of both. The proposed approach is particularly important for the decision models in logistic and supply chain management, where an objective function and many discrete decision variables added up in multiple constraints.

Keywords

constraint logic programming mathematical programming optimization supply chain management hybrid methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge University Press (2006)Google Scholar
  2. 2.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons (1998) ISBN 0-471-98232-6Google Scholar
  3. 3.
    Mula, J., Peidro, D., Diaz-Madronero, M., Vicens, E.: Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research 204, 377–390 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Williams, H.P.: Logic and Integer Programming. Springer, Berlin (2009)zbMATHGoogle Scholar
  5. 5.
    Bockmayr, A., Kasper, T.: Branch-and-Infer: A Framework for Combining CP and IP. In: Constraint and Integer Programming. Operations Research/Computer Science Interfaces Series, vol. 27, pp. 59–87 (2004)Google Scholar
  6. 6.
    Dang, Q.V., Nielsen, I.: Simultaneous scheduling of machines and mobile robots. In: Corchado, J.M., et al. (eds.) PAAMS 2013. CCIS, vol. 365, pp. 118–128. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Sitek, P., Wikarek, J.: A Declarative Framework for Constrained Search Problems. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 728–737. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Sitek, P., Wikarek, J.: Cost optimization of supply chain with multimodal transport. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1111–1118 (2012)Google Scholar
  9. 9.
    Pawlewski, P.: Multimodal Approach to Model and Design Supply Chain. In: Proceedings of IFAC MIM Conference, St. Petersburg (2013)Google Scholar
  10. 10.
    Bocewicz, G., Wójcik, R., Banaszak, Z.: Cyclic Scheduling for Supply Chain Network. In: Rodríguez, J.M.C., Pérez, J.B., Golinska, P., Giroux, S., Corchuelo, R. (eds.) Trends in PAAMS. AISC, vol. 157, pp. 39–48. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Bocewicz, G., Banaszak, Z.: Declarative approach to cyclic steady states space refinement: periodic processes scheduling. International Journal of Advanced Manufacturing Technology 67(1-4), 137–155 (2013)CrossRefGoogle Scholar
  12. 12.
    Eclipse – The Eclipse Foundation open source community website, http://www.eclipse.org
  13. 13.
    LINDO Systems – Optimization Software: Integer Programming, Linear Programming, Nonlinear, http://www.lindo.com
  14. 14.
    Różewski, P., Małachowski, B.: System for Creative Distance Learning Environment Development Based on Competence Management. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part IV. LNCS, vol. 6279, pp. 180–189. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Management and Control SystemsUniversity of TechnologyKielcePoland

Personalised recommendations