Changing the Hidden Rules - An Excel Template for Discussing Soccer’s Competitive Balance

  • Joaquim Teixeira
  • Nuno Santos
  • Paulo Mourao
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 290)


We constructed a (Microsoft Excel) Template for simulating the final tables of soccer leagues. In our Template, the user can insert different values for parameters that influence the soccer leagues (such as the importance of the sports history of each competing team, the influence of home advantages, or the relevance of the referees’ decisions). The user is also able to choose among different systems of points awarded for victory. Then, the Template produces an index for the competitive balance of the entire league. We tested several combinations of parameters and concluded that the most balanced leagues are characterized by rewarding victory with 2 points and draws with 1 point and when the influence of the teams’ history or budget is minimized.


Simulator Template Soccer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gunga, V., Kishnah, S., Pudaruth, S.: Design of a multi-agent system architecture for the scrum methodology. International Journal of Software Engineering & Applications (IJSEA) 4(4) (July 2013)Google Scholar
  2. 2.
    Cairns, J.: Evaluating changes in league structure: The reorganization of the Scottish Football League. Applied Economics 19, 259–275 (1987)CrossRefGoogle Scholar
  3. 3.
    Burkitt, B., Cameron, S.: Impact of League Restructuring on Team Sport Attendeces: the case of rugby league. Applied Economics 24, 265–271 (1992)CrossRefGoogle Scholar
  4. 4.
    Dobson, S.J., Wilson, J.: League Structure and Match Attendances in English Rugby League. International Review of Applied Economics 15(3), 335–351 (2001)CrossRefGoogle Scholar
  5. 5.
    Newson, G.: Three points for a win: Has it Made any Difference? The Mathematical Gazzete 68, 87–91 (1984)CrossRefGoogle Scholar
  6. 6.
    Pollard, R.: Home Advantage in football: A current of an unsolved puzzle. The Open Sports Science 1(1), 12–14 (2008)CrossRefGoogle Scholar
  7. 7.
    Courneya, K.S., Carron, A.V.: The Home Advantage in Sport Competition: A Literature Review. Journal of Sport and Exercise Psychology 14, 13–27Google Scholar
  8. 8.
    Schnytzer, A., Weinberg, G.: Testing for home team and favorite biases in the Australian rules football fixed odds and point spread betting markets. Working Papers 2011-13, Department of Economics, Bar-Ilan University (2007)Google Scholar
  9. 9.
    Jamieson, J.P.: The Home Field advantage in Athletics: A Meta-Analysis. Journal of Applied Social Psychology 40(7), 1818–1848 (2010)CrossRefGoogle Scholar
  10. 10.
    Carron, A., Loughhead, T.M., Bray, S.-R.: The Home Advantage in Sport Competitions: Courneya and Carron’s (1992) conceptual framework a decade later. Journal of Sports Sciences 23(4), 395–407 (2005)CrossRefGoogle Scholar
  11. 11.
    Neave, N., Wolfson, S.: Testosterone, territoriality, and the home advantage in soccer (2002)Google Scholar
  12. 12.
    Bernheim, B.D.: A Theory of Conformity. Journal of Political Economy 102(5), 841–877 (1994)CrossRefGoogle Scholar
  13. 13.
    Becker, G.S., Murphy, K.M.: Social Economics: Market Behavior in a Social Environment. Belknap Press/ Harvard University Press, Cambridge, MA (2000)Google Scholar
  14. 14.
    Wallsten, T.S., Barton, C.: Processing probabilistic multidimensional information for decision. Journal of Experimental Psychology: Learning, Memory and Cognition 8, 361–384 (1982)Google Scholar
  15. 15.
    Wickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance, 3rd edn. Prentice Hall (2002)Google Scholar
  16. 16.
    Nevill, A.M., Balmer, N.J., Williams, A.M.: The influence of crowd noise and experience refereeing decisions on football. Psycohology of Sport and Exercise 3, 261–272 (2002)CrossRefGoogle Scholar
  17. 17.
    Garicano, L., Palacios, I., Prendegast, C.: Favoritism Under Social Pressure, NBER Working Paper 8376 (2001)Google Scholar
  18. 18.
    Mourao, P.: The Indebtedness of Portuguese Soccer Teams – looking for determinants. Journal of Sports Science 30(10), 1025–1035 (2012)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Lafuente, J.G.: Automatismos y racionalidad en la toma de decisions para sustituir a un deportista en momentos decisivos. Cuaderno de Gestión 8(1), 39–58 (2008)Google Scholar
  20. 20.
    Papahristodoulou, C.: Optimal football strategies: Ac Milan versus Fc Barcelona. MRPA Paper No 35940 (January 2012)Google Scholar
  21. 21.
    Kupfer, D.: Economia Industrial: fundamentos teóricos e práticos no Brasil, Brasil. Elsevier ed. Campus, Rio de Janeiro (2002)Google Scholar
  22. 22.
    Cano, R., Sánchez, J., Pinzón, C.: Management ubiquitous of messages and documents organizational through intelligent agentes. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds.) International Symposium on DCAI. ASC, vol. 50, pp. 171–179. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joaquim Teixeira
    • 1
  • Nuno Santos
    • 2
  • Paulo Mourao
    • 3
  1. 1.BSc EconomicsUniversidade de Tras-os-Montes e Alto DouroVila RealPortugal
  2. 2.BSc Mechanical EngineeringUniversidade de Tras-os-Montes e Alto DouroVila RealPortugal
  3. 3.Department of EconomicsUniversity of MinhoBragaPortugal

Personalised recommendations