Skip to main content

The Worst Case Complexity of Maximum Parsimony

  • Conference paper
Combinatorial Pattern Matching (CPM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8486))

Included in the following conference series:

  • 716 Accesses

Abstract

One of the core classical problems in computational biology is that of constructing the most parsimonious phylogenetic tree interpreting an input set of sequences from the genomes of evolutionarily related organisms. We re-examine the classical Maximum Parsimony (MP) optimization problem for the general (asymmetric) scoring matrix case, where rooted phylogenies are implied, and analyze theworst case bounds of three approaches to MP: The approach of Cavalli-Sforza and Edwards [5], the approach of Hendy and Penny [12], and a new agglomerative, “bottomup” approach we present in this paper. We show that the second and third approaches are faster than the first by a factor of \(\Theta(\sqrt{n})\) and Θ(n), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal on Computing 23(6), 1216–1224 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bastien, O., Roy, S., Maréchal, É.: Construction of non-symmetric substitution matrices derived from proteomes with biased amino acid distributions. Comptes Rendus Biologies 328(5), 445–453 (2005)

    Article  Google Scholar 

  3. Blouin, M.S., Yowell, C.A., Courtney, C.H., Dame, J.B.: Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Molecular Biology and Evolution 15(12), 1719–1727 (1998)

    Article  Google Scholar 

  4. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. Springer (1992)

    Google Scholar 

  5. Cavalli-Sforza, L.L., Edwards, A.W.: Phylogenetic analysis. Models and estimation procedures. American Journal of Human Genetics 19(3 pt. 1), 233 (1967)

    Google Scholar 

  6. Day, W.H., Sankoff, D.: Computational complexity of inferring phylogenies by compatibility. Systematic Biology 35(2), 224–229 (1986)

    Article  Google Scholar 

  7. Felsenstein, J., Felenstein, J.: Inferring phylogenies, vol. 2. Sinauer Associates Sunderland (2004)

    Google Scholar 

  8. Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 20(4), 406–416 (1971)

    Article  Google Scholar 

  9. Foulds, L.R., Graham, R.L.: The steiner problem in phylogeny is np-complete. Advances in Applied Mathematics 3(1), 43–49 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gojobori, T., Ishii, K., Nei, M.: Estimation of average number of nucleotide substitutions when the rate of substitution varies with nucleotide. J. of Molecular Evolution 18(6), 414–422 (1982)

    Article  Google Scholar 

  11. Grosswald, E.: Bessel Polynomials (1978)

    Google Scholar 

  12. Hendy, M., Penny, D.: Branch and bound algorithms to determine minimal evolutionary trees. Mathematical Biosciences 59(2), 277–290 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. McMorris, F.R., Warnow, T.J., Wimer, T.: Triangulating vertex colored graphs. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 120–127. Society for Industrial and Applied Mathematics (1993)

    Google Scholar 

  14. Müller, T., Rahmann, S., Rehmsmeier, M.: Non-symmetric score matrices and the detection of homologous transmembrane proteins. Bioinformatics 17(suppl. 1), S182–S189 (2001)

    Google Scholar 

  15. Ochiumi, N., Kanazawa, F., Yanagida, M., Horibe, Y.: On the average number of nodes covering a given number of leaves in an unordered binary tree. J. of Combinatorial Mathematics and Combinatorial Computing 76, 3 (2011)

    Google Scholar 

  16. Rodriguez, F., Oliver, J.L., Marin, A., Medina, J.R.: The general stochastic model of nucleotide substitution. J. of Theoretical Biology 142(4), 485–501 (1990)

    Article  MathSciNet  Google Scholar 

  17. Sankoff, D.: Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics 28(1), 35–42 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tajima, F., Nei, M.: Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1(3), 269–285 (1984)

    Google Scholar 

  19. Takahata, N., Kimura, M.: A model of evolutionary base substitutions and its application with special reference to rapid change of pseudogenes. Genetics 98(3), 641–657 (1981)

    MathSciNet  Google Scholar 

  20. Tamura, K.: The rate and pattern of nucleotide substitution in drosophila mitochondrial DNA. Molecular Biology and Evolution 9(5), 814–825 (1992)

    Google Scholar 

  21. Tamura, K., Nei, M.: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3), 512–526 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Carmel, A., Musa-Lempel, N., Tsur, D., Ziv-Ukelson, M. (2014). The Worst Case Complexity of Maximum Parsimony. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds) Combinatorial Pattern Matching. CPM 2014. Lecture Notes in Computer Science, vol 8486. Springer, Cham. https://doi.org/10.1007/978-3-319-07566-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07566-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07565-5

  • Online ISBN: 978-3-319-07566-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics