Advertisement

Study and Interpretation Protocol

  • Patricia Carrascosa
  • Carlos Capuñay
  • Carlos E. Sueldo
  • Juan Mariano Baronio
Chapter

Abstract

The VHSG is a novel non invasive diagnostic modality which allows a complete evaluation of the gynecologic system (cervix, uterus and Fallopian tubes) in a single study. It is performed with multislice computed tomography (MSCT) that obtains volumetric acquisitions in few seconds. Images can then be post-processed on diverse planes without loss of definition. The MSCT achieves the concept of isotropy where, despite the acquisition of the image on the axial plane, it can evaluate the anatomy or the pathology in any other plane with similar image quality.

Keywords

Fallopian Tube Multiplanar Reconstruction Multislice Compute Tomography Virtual Endoscopy Tubal Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Carrascosa P, Baronio M, Capuňay C, et al. Multidetector computed tomography virtual hysterosalpingography in the investigation of the uterus and fallopian tubes. Clinical Imaging. 2009;33:165.Google Scholar
  2. 2.
    Carrascosa P, Capuñay C, Mariano B, et al. Virtual hysteroscopy by multidetector computed tomography. Abdom Imaging. 2008;33(4):381–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Carrascosa P, Capuñay C, Baronio M, et al. 64- Row multidetector CT virtual hysterosalpingography. Abdom Imaging. 2009;34:121–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Carrascosa P, Capuñay C, Vallejos J, et al. Virtual hysterosalpingography: a new multidetector CT technique for evaluating the female reproductive system. Radiographics. 2010;30:643–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Carrascosa P, Capuñay C, Vallejos J, et al. Virtual hysterosalpingography: experience with over 1000 consecutive patients. Abdom Imaging. 2011;36(1):1–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Hsieh J. Computed tomography. Bellingham: SPIE; 2003. p. 1–12.Google Scholar
  7. 7.
    Hu H, He HD, Foley WD, et al. Four multidetector row helical CT: image quality and volume coverage speed. Radiology. 2000;215:55–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Mahesh M, Scatarige JC, Cooper J, et al. Dose and pitch relationship for isotropic resolution in CT from conventional through multiple-row detector. Radiographics. 2002;22:949–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Kulama E. Scanning protocols for multislice CT scanners. Br J Radiol. 2004;77:S2–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Mc Collough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys. 1999;26:2223–30.CrossRefGoogle Scholar
  11. 11.
    Mori S, Endo M, Tsunoo T, et al. Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging. Med Phys. 2004;31(6):1348–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Endo M, Mori S, Kandatsu S, et al. Development and performance evaluation of the second model 256-detector row CT. Radiol Phys Technol. 2008;1(1):20–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Ritschl L, Sawall S, Knaup M, et al. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys Med Biol. 2012;57(6):1517–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med. 2012;28(2):94–108.PubMedCrossRefGoogle Scholar
  15. 15.
    Sebastian S, Kalra MK, Mittal P, et al. Can independent coronal multiplanar reformatted images obtained using state-of-the-art MDCT scanners be used for primary interpretation of MDCT of the abdomen and pelvis? A feasibility study. Eur J Radiol. 2007;64(3):439–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Kirchgeorg MA, Prokop M. Increasing spiral CT benefits with postprocessing applications. Eur J Radiol. 1998;28(1):39–54. Review.PubMedCrossRefGoogle Scholar
  17. 17.
    Baronio M, Carrascosa P, Capuñay C, et al. Diagnostic performance of CT virtual hysteroscopy in 69 consecutive patients. Fertil Steril. 2010;94(Suppl):S77.CrossRefGoogle Scholar
  18. 18.
    Capuñay C, Baronio M, Carrascosa P, et al. CT virtual hysterosalpingography in the evaluation of uterine myomas. Fertil Steril. 2010;94(Suppl):S211.Google Scholar
  19. 19.
    Carrascosa P, Baronio JM, Borghi M, et al. Histerosalpingoscopía virtual. Una técnica novedosa y no invasiva para diagnosticar patología intrauterina. Reproduccion. 2006;21:19–26.Google Scholar
  20. 20.
    Chalazonitis A, Tzovara I, Laspas F, et al. Hysterosalpingography: technique and applications. Curr Probl Diagn Radiol. 2009;38(5):199–205.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee A, Ying YK, Novy MJ. Hysteroscopy, hysterosalpingography and tubal ostial polyps in infertility patients. J Reprod Med. 1997;42(6):337–41.PubMedGoogle Scholar
  22. 22.
    Radić V, Canić T, Valetić J, et al. Advantages and disadvantages of hysterosonosalpingography in the assessment of the reproductive status of uterine cavity and fallopian tubes. Eur J Radiol. 2005;53(2):268–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Hamed HO, Shahin AY, Elsamman AM. Hysterosalpingo-contrast sonography versus radiographic hysterosalpingography in the evaluation of tubal patency. Int J Gynaecol Obstet. 2009;105(3):215–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Patricia Carrascosa
    • 1
  • Carlos Capuñay
    • 1
  • Carlos E. Sueldo
    • 2
  • Juan Mariano Baronio
    • 3
  1. 1.Diagnóstico MaipúBuenos AiresArgentina
  2. 2.University of CaliforniaSan FranciscoUSA
  3. 3.CEGYRBuenos AiresArgentina

Personalised recommendations