Skip to main content

Integer Programs with Prescribed Number of Solutions and a Weighted Version of Doignon-Bell-Scarf’s Theorem

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8494))

Abstract

In this paper we study a generalization of the classical feasibility problem in integer linear programming, where an ILP needs to have a prescribed number of solutions to be considered solved.

We first provide a generalization of the famous Doignon-Bell-Scarf theorem: Given an integer k, we prove that there exists a constant c(k,n), depending only on the dimension n and k, such that if a polyhedron {x : Ax ≤ b} contains exactly k integer solutions, then there exists a subset of the rows of cardinality no more than c(k,n), defining a polyhedron that contains exactly the same k integer solutions.

The second contribution of the article presents a structure theory that characterizes precisely the set sg  ≥ k (A) of all vectors b such that the problem Ax = b, x ≥ 0, x ∈ ℤn, has at least k-solutions. We demonstrate that this set is finitely generated, a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computation. Similar results can be derived for those right-hand-side vectors that have exactly k solutions or fewer than k solutions.

Finally we show that, when n, k are fixed natural numbers, one can compute in polynomial time an encoding of sg  ≥ k (A) as a generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors that have exactly k solutions (similarly for at least k or less than k solutions). Under the same assumptions we prove that the k-Frobenius number can be computed in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4ti2 team. 4ti2–Software package for algebraic, geometric and combinatorial problems on linear spaces, http://www.4ti2.de/

  2. Aardal, K., Lenstra, A.K.: Hard equality constrained integer knapsacks. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 350–366. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Aliev, I., Fukshansky, L., Henk, M.: Generalized Frobenius Numbers: Bounds and Average Behavior. Acta Arith. 155, 53–62 (2012)

    MATH  MathSciNet  Google Scholar 

  4. Aliev, I., Henk, M., Linke, E.: Integer Points in Knapsack Polytopes and s-covering Radius. Electron. J. Combin. 20(2), Paper 42, 17 (2013)

    Google Scholar 

  5. Barvinok, A.I.: Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. of Operations Research 19, 769–779 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barvinok, A.I., Woods, K.: Short rational generating functions for lattice point problems. J. Amer. Math. Soc. 16, 957–979 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bell, D.E.: A theorem concerning the integer lattice. Studies in Applied Mathematics 56(1), 187–188 (1977)

    MATH  Google Scholar 

  8. Beck, M., Robins, S.: A formula related to the Frobenius problem in two dimensions. In: Number Theory (New York, 2003), pp. 17–23. Springer, New York (2004)

    Google Scholar 

  9. Bruns, W., Gubeladze, J., Trung, N.V.: Problems and algorithms for affine semigroups. Semigroup Forum 64, 180–212 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bruns, W., Koch, R.: NORMALIZ, computing normalizations of affine semigroups, ftp://ftp.mathematik.uni-osnabrueck.de/pub/osm/kommalg/software/

  11. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. Journal of the ACM 42(2), 488–499 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, Undergraduate Texts in Mathematics. Springer, New York (1992)

    Book  Google Scholar 

  13. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. Journal of Symbolic Computation 38(4), 1273–1302 (2004)

    Article  MathSciNet  Google Scholar 

  14. De Loera, J.A., Haws, D.C., Hemmecke, R., Huggins, P., Sturmfels, B., Yoshida, R.: Short rational functions for toric algebra and applications. Journal of Symbolic Computation 38(2), 959–973 (2004)

    Article  MathSciNet  Google Scholar 

  15. De Loera, J.A., Hemmecke, R., Köppe, M.: Algebraic and geometric ideas in the theory of discrete optimization. MOS-SIAM Series on Optimization, vol. 14, p. xx+322. Society for Industrial and Applied Mathematics (SIAM), Philadelphia; Mathematical Optimization Society, Philadelphia (2013)

    Google Scholar 

  16. Dobra, A., Karr, A.F., Sanil, P.A.: Preserving confidentiality of high-dimensional tabulated data: statistical and computational issues. Stat. Comput. 13, 363–370 (2003)

    Article  MathSciNet  Google Scholar 

  17. Doignon, J.-P.: Convexity in cristallographical lattices. Journal of Geometry 3(1), 71–85 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eisenbrand, F., Hähnle, N.: Minimizing the number of lattice points in a translated polygon. In: Proceedings of SODA, pp. 1123–1130 (2013)

    Google Scholar 

  19. Fukshansky, L., Schürmann, A.: Bounds on generalized Frobenius numbers. European J. Combin. 3, 361–368 (2011)

    Article  Google Scholar 

  20. Haase, C., Nill, B., Payne, S.: Cayley decompositions of lattice polytopes and upper bounds for h *-polynomials. J. Reine Angew. Math. 637, 207–216 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Hemmecke, R., Takemura, A., Yoshida, R.: Computing holes in semi-groups and its application to transportation problems. Contributions to Discrete Mathematics 4, 81–91 (2009)

    MATH  MathSciNet  Google Scholar 

  22. Kannan, R.: Lattice translates of a polytope and the Frobenius problem. Combinatorica 12(2), 161–177 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lagarias, J.C., Ziegler, G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math. 43(5), 1022–1035 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pikhurko, O.: Lattice points in lattice polytopes. Mathematika 48(1-2), 15–24 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ramírez Alfonsín, J.L.: Gaps in semigroups. Discrete Mathematics 308(18), 4177–4184 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ramírez Alfonsín, J.L.: Complexity of the Frobenius problem. Combinatorica 16(1), 143–147 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, New York (2006)

    Google Scholar 

  28. Schrijver, A.: Theory of linear and integer programming. Wiley (1998)

    Google Scholar 

  29. Scarf, H.E.: An observation on the structure of production sets with indivisibilities. Proceedings of the National Academy of Sciences 74(9), 3637–3641 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stanley, R.P.: Combinatorics and Commutative Algebra, 2nd edn. Progress in Mathematics, vol. 41. Birkhäuser, Basel (1996)

    MATH  Google Scholar 

  31. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. AMS, Providence (1995)

    Google Scholar 

  32. Takemura, A., Yoshida, R.: A generalization of the integer linear infeasibility problem. Discrete Optimization 5, 36–52 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Aliev, I., De Loera, J.A., Louveaux, Q. (2014). Integer Programs with Prescribed Number of Solutions and a Weighted Version of Doignon-Bell-Scarf’s Theorem. In: Lee, J., Vygen, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2014. Lecture Notes in Computer Science, vol 8494. Springer, Cham. https://doi.org/10.1007/978-3-319-07557-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07557-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07556-3

  • Online ISBN: 978-3-319-07557-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics