Skip to main content

Claw-Free t-Perfect Graphs Can Be Recognised in Polynomial Time

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8494))

Abstract

A graph is called t-perfect if its stable set polytope is defined by non-negativity, edge and odd-cycle inequalities. We show that it can be decided in polynomial time whether a given claw-free graph is t-perfect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boulala, M., Uhry, J.P.: Polytope des indépendants d’un graphe série-parallèle. Disc. Math. 27, 225–243 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruhn, H., Stein, M.: t-perfection is always strong for claw-free graphs. SIAM. J. Discrete Math. 24, 770–781 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruhn, H., Stein, M.: On claw-free t-perfect graphs. Math. Program. 133, 461–480 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., Vušković, K.: Recognizing berge graphs. Combinatorica 25, 143–187 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chudnovsky, M., Seymour, P., Robertson, N., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chvátal, V.: On certain polytopes associated with graphs. J. Combin. Theory (Series B) 18, 138–154 (1975)

    Article  MATH  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 3rd edn. MIT Press (2009)

    Google Scholar 

  8. Diestel, R.: Graph theory, 4th edn. Springer (2010)

    Google Scholar 

  9. Eisenbrand, F., Funke, S., Garg, N., Könemann, J.: A combinatorial algorithm for computing a maximum independent set in a t-perfect graph. In: SODA, pp. 517–522 (2002)

    Google Scholar 

  10. Fellows, M.R., Kratochvil, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13, 266–282 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fonlupt, J., Uhry, J.P.: Transformations which preserve perfectness and h-perfectness of graphs. Ann. Disc. Math. 16, 83–95 (1982)

    MATH  MathSciNet  Google Scholar 

  12. Gerards, A.M.H., Shepherd, F.B.: The graphs with all subgraphs t-perfect. SIAM J. Discrete Math. 11, 524–545 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in claw-free graphs, arXiv:1202.4419v1

    Google Scholar 

  14. Huynh, T.C.T.: The linkage problem for group-labelled graphs, PhD thesis, University of Waterloo (2009)

    Google Scholar 

  15. Kawarabayashi, K., Reed, B., Wollan, P.: The graph minor algorithm with parity conditions. In: FOCS, pp. 27–36 (2011)

    Google Scholar 

  16. Király, T., Páp, J.: A note on kernels in h-perfect graphs, Tech. Report TR-2007-03, Egerváry Research Group (2007)

    Google Scholar 

  17. Király, T., Páp, J.: Kernels, stable matchings and Scarf’s Lemma, Tech. Report TR-2008-13, Egerváry Research Group (2008)

    Google Scholar 

  18. Maffray, F., Trotignon, N.: Algorithms for perfectly contractile graphs. SIAM J. Discrete Math. 19, 553–574 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Padberg, M.W.: Perfect zero-one matrices. Math. Programming 6, 180–196 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Roussopoulos, N.D.: A max {m, n } algorithm for determining the graph H from its line graph G. Inf. Process. Lett. 2, 108–112 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sbihi, N., Uhry, J.P.: A class of h-perfect graphs. Disc. Math. 51, 191–205 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schrijver, A.: Strong t-perfection of bad-K 4-free graphs. SIAM J. Discrete Math. 15, 403–415 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schrijver, A.: Combinatorial optimization. In: Polyhedra and efficiency. Springer (2003)

    Google Scholar 

  24. Shepherd, F.B.: Applying Lehman’s theorems to packing problems. Math. Prog. 71, 353–367 (1995)

    MATH  MathSciNet  Google Scholar 

  25. van ’t Hof, P., Kamiński, M., Paulusma, D.: Finding induced paths of given parity in claw-free graphs. Algorithmica 62, 537–563 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bruhn, H., Schaudt, O. (2014). Claw-Free t-Perfect Graphs Can Be Recognised in Polynomial Time. In: Lee, J., Vygen, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2014. Lecture Notes in Computer Science, vol 8494. Springer, Cham. https://doi.org/10.1007/978-3-319-07557-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07557-0_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07556-3

  • Online ISBN: 978-3-319-07557-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics