Advertisement

A Strongly Polynomial Time Algorithm for Multicriteria Global Minimum Cuts

  • Hassene Aissi
  • A. Ridha Mahjoub
  • S. Thomas McCormick
  • Maurice Queyranne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8494)

Abstract

We investigate the bicriteria global minimum cut problem where each edge is evaluated by two nonnegative cost functions. The parametric complexity of such a problem is the number of linear segments in the parametric curve when we take all convex combinations of the criteria. We prove that the parametric complexity of the global minimum cut problem is O(|V|3). As a consequence, we show that the number of non-dominated points is O(|V|7) and give the first strongly polynomial time algorithm to compute these points. These results improve on significantly the super-polynomial bound on the parametric complexity given by Mulmuley [11], and the pseudo-polynomial time algorithm of Armon and Zwick [1] to solve this bicriteria problem. We extend some of these results to arbitrary cost functions and more than two criteria, and to global minimum cuts in hypergraphs.

Keywords

Polynomial Time Algorithm Parametric Complexity Edge Cost Contraction Operation Bicriteria Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armon, A., Zwick, U.: Multicriteria global minimum cuts. Algorithmica 46(1), 15–26 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Carstensen, P.: Complexity of some parametric integer and network programming problems. Mathematical Programming 26, 64–75 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ehrgott, M.: Multicriteria Optimization. Springer (2005)Google Scholar
  4. 4.
    Henzinger, M., Williamson, D.P.: On the number of small cuts in a graph. Information Processing Letters 59(1), 41–44 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ihler, E., Wagner, D., Wagner, F.: Modeling hypergraphs by graphs with the same mincut properties. Information Processing Letters 45(4), 171–175 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 21–30 (1993)Google Scholar
  7. 7.
    Karger, D.R.: Minimum cuts in near-linear time. Journal of the ACM 47(1), 46–76 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Karger, D.R., Stein, C.: A new approach to the minimum cut problem. Journal of the ACM 43(4), 601–640 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Freie Univ., Fachbereich Mathematik (1996)Google Scholar
  10. 10.
    McCormick, S.T., Ervolina, T.R.: Computing maximum mean cuts. Discrete Applied Math 52, 53–70 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Mulmuley, K.: Lower bounds in a parallel model without bit operations. SIAM Journal on Computing 28(4), 1460–1509 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mak, W.K., Wong, D.F.: A fast hypergraph min-cut algorithm for circuit partitioning. Integration, the VLSI Journal 30(1), 1–11 (2000)zbMATHGoogle Scholar
  13. 13.
    Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM Journal on Discrete Mathematics 5(1), 54–66 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Nagamochi, H., Ibaraki, T.: Algorithmic aspects of graph connectivity. Cambridge University Press (2008)Google Scholar
  15. 15.
    Nagamochi, H., Nakamura, S., Ishii, T.: Constructing a cactus for minimum cuts of a graph in O(mn + n 2 logn) time and O(m) space. Inst. Electron. Inform. Comm. Eng. Trans. Inform. Systems, 179–185 (2003)Google Scholar
  16. 16.
    Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in undirected networks. SIAM Journal of Discrete Mathematics 10, 469–481 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Queyranne, M.: Minimizing symmetric submodular functions. Mathematical Programming 82(1-2), 3–12 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Radzik, T.: Newton’s Method for Fractional Combinatorial Optimization. In: Proceedings of IEEE Annual Symp. of Foundations of Computer Science, pp. 659–669 (1992)Google Scholar
  19. 19.
    Stoer, M., Wagner, F.: A simple min-cut algorithm. Journal of the ACM 44(4), 585–591 (1997)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hassene Aissi
    • 1
  • A. Ridha Mahjoub
    • 1
  • S. Thomas McCormick
    • 2
  • Maurice Queyranne
    • 2
  1. 1.PSLUniversité Paris-Dauphine, LAMSADEFrance
  2. 2.Sauder School of BusinessUniversity of British ColumbiaCanada

Personalised recommendations