On the Configuration LP for Maximum Budgeted Allocation

  • Christos Kalaitzis
  • Aleksander Mądry
  • Alantha Newman
  • Lukáš Poláček
  • Ola Svensson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8494)


We study the Maximum Budgeted Allocation problem, i.e., the problem of selling a set of m indivisible goods to n players, each with a separate budget, such that we maximize the collected revenue. Since the natural assignment LP is known to have an integrality gap of \(\frac{3}{4}\), which matches the best known approximation algorithms, our main focus is to improve our understanding of the stronger configuration LP relaxation. In this direction, we prove that the integrality gap of the configuration LP is strictly better than \(\frac{3}{4}\), and provide corresponding polynomial time roundings, in the following restrictions of the problem: (i) the Restricted Budgeted Allocation problem, in which all the players have the same budget and every item has the same value for any player it can be sold to, and (ii) the graph MBA problem, in which an item can be assigned to at most 2 players. Finally, we improve the best known upper bound on the integrality gap for the general case from \(\frac{5}{6}\) to \(2\sqrt{2}-2\approx 0.828\) and also prove hardness of approximation results for both cases.


Approximation Algorithm Allocation Problem Small Item Approximation Guarantee Unrelated Parallel Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andelman, N., Mansour, Y.: Auctions with budget constraints. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 26–38. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Asadpour, A., Feige, U., Saberi, A.: Santa claus meets hypergraph matchings. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 10–20. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Azar, Y., Birnbaum, B.E., Karlin, A.R., Mathieu, C., Nguyen, C.T.: Improved approximation algorithms for budgeted allocations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 186–197. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Bansal, N., Sviridenko, M.: The santa claus problem. In: Kleinberg, J.M. (ed.) STOC, pp. 31–40. ACM Press (2006)Google Scholar
  5. 5.
    Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and gap. SIAM J. Comput. 39(6), 2189–2211 (2010)Google Scholar
  6. 6.
    Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: A special case of scheduling unrelated parallel machines. In: SODA, pp. 483–490. Society for Industrial and Applied Mathematics (2008)Google Scholar
  7. 7.
    Feige, U.: On allocations that maximize fairness. In: SODA, pp. 287–293. SIAM (2008)Google Scholar
  8. 8.
    Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e. In: FOCS, pp. 667–676 (2006)Google Scholar
  9. 9.
    Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications to approximation algorithms. J. ACM 53(3), 324–360 (2006)Google Scholar
  10. 10.
    Garg, R., Kumar, V., Pandit, V.: Approximation algorithms for budget-constrained auctions. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 102–113. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer (1993)Google Scholar
  12. 12.
    Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games and Economic Behavior 55(2), 270–296 (2006)Google Scholar
  13. 13.
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)Google Scholar
  14. 14.
    Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Math. Program. 62, 461–474 (1993)Google Scholar
  15. 15.
    Srinivasan, A.: Budgeted allocations in the full-information setting. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 247–253. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41(5), 1318–1341 (2012)Google Scholar
  17. 17.
    Verschae, J., Wiese, A.: On the configuration-LP for scheduling on unrelated machines. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 530–542. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christos Kalaitzis
    • 1
  • Aleksander Mądry
    • 1
  • Alantha Newman
    • 1
  • Lukáš Poláček
    • 2
  • Ola Svensson
    • 1
  1. 1.EPFLSwitzerland
  2. 2.KTH Royal Institute of TechnologySweden

Personalised recommendations