Advertisement

Lower Bounds on the Sizes of Integer Programs without Additional Variables

  • Volker Kaibel
  • Stefan Weltge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8494)

Abstract

For a given set X ⊆ ℤ d of integer points, we investigate the smallest number of facets of any polyhedron whose set of integer points is conv(X) ∩ ℤ d . This quantity, which we call the relaxation complexity of X , corresponds to the smallest number of linear inequalities of any integer program having X as the set of feasible solutions that does not use auxiliary variables. We show that the use of auxiliary variables is essential for constructing polynomial size integer programming formulations in many relevant cases. In particular, we provide asymptotically tight exponential lower bounds on the relaxation complexity of the integer points of several well-known combinatorial polytopes, including the traveling salesman polytope and the spanning tree polytope.

Keywords

integer programming relaxations auxiliary variables tsp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: STOC, pp. 95–106 (2012)Google Scholar
  2. 2.
    Gavish, B., Graves, S.C.: The travelling salesman problem and related problems. Technical report, Operations Research Center, Massachusetts Institute of Technology (1978)Google Scholar
  3. 3.
    Goemans, M.: Smallest compact formulation for the permutahedron. Kaibel, V., Thomas, R. (eds.) To appear in a forthcoming issue of Mathematical Programming, Series B “Lifts of Convex Sets” (2014)Google Scholar
  4. 4.
    Jeroslow, R.: On defining sets of vertices of the hypercube by linear inequalities. Discrete Mathematics 11(2), 119–124 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Lee, J., Margot, F.: On a binary-encoded ilp coloring formulation. INFORMS Journal on Computing 19(3), 406–415 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kipp Martin, R.: Using separation algorithms to generate mixed integer model reformulations. Oper. Res. Lett. 10(3), 119–128 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM 7(4), 326–329 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Minkowski, H.: Geometrie der Zahlen. Teubner Verlag, Leipzig (1896)Google Scholar
  9. 9.
    Rado, R.: An inequality. J. London Math. Soc. 27, 1–6 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Schrijver, A.: Combinatorial Optimization – Polyhedra and Efficiency. Springer (2003)Google Scholar
  11. 11.
    Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York (1986)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Volker Kaibel
    • 1
  • Stefan Weltge
    • 1
  1. 1.Otto-von-Guericke-Universität MagdeburgGermany

Personalised recommendations