Strong LP Formulations for Scheduling Splittable Jobs on Unrelated Machines

  • José R. Correa
  • Alberto Marchetti-Spaccamela
  • Jannik Matuschke
  • Leen Stougie
  • Ola Svensson
  • Víctor Verdugo
  • José Verschae
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8494)


We study a natural generalization of the problem of minimizing makespan on unrelated machines in which jobs may be split into parts. The different parts of a job can be (simultaneously) processed on different machines, but each part requires a setup time before it can be processed. First we show that a natural adaptation of the seminal approximation algorithm for unrelated machine scheduling [11] yields a 3-approximation algorithm, equal to the integrality gap of the corresponding LP relaxation. Through a stronger LP relaxation, obtained by applying a lift-and-project procedure, we are able to improve both the integrality gap and the implied approximation factor to 1 + φ, where φ ≈ 1.618 is the golden ratio. This ratio decreases to 2 in the restricted assignment setting, matching the result for the classic version. Interestingly, we show that our problem cannot be approximated within a factor better than \(\frac{e}{e-1}\approx 1.582\) (unless \(\mathcal{P}=\mathcal{NP}\)). This provides some evidence that it is harder than the classic version, which is only known to be inapproximable within a factor 1.5 − ε. Since our 1 + φ bound remains tight when considering the seemingly stronger machine configuration LP, we propose a new job based configuration LP that has an infinite number of variables, one for each possible way a job may be split and processed on the machines. Using convex duality we show that this infinite LP has a finite representation and can be solved in polynomial time to any accuracy, rendering it a promising relaxation for obtaining better algorithms.


Setup Time Golden Ratio Unrelated Parallel Machine Unrelated Machine Schedule Unrelated Parallel Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187, 985–1032 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Asadpour, A., Feige, U., Saberi, A.: Santa claus meets hypergraph matchings. ACM Trans. Algorithms 24, 24:1–24:9 (2012)Google Scholar
  3. 3.
    Bansal, N., Sviridenko, M.: The Santa Claus problem. In: STOC, pp. 31–40 (2006)Google Scholar
  4. 4.
    Chen, B., Ye, Y., Zhang, J.: Lot-sizing scheduling with batch setup times. J. Sched. 9, 299–310 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Correa, J.R., Verdugo, V., Verschae, J.: Approximation algorithms for scheduling splitting jobs with setup times. In: Talk in MAPSP (2013)Google Scholar
  6. 6.
    Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: A special case of scheduling unrelated parallel machines. Algorithmica (2012), doi:10.1007/s00453-012-9668-9Google Scholar
  7. 7.
    Feige, U.: On allocations that maximize fairness. In: SODA, pp. 287–293 (2008)Google Scholar
  8. 8.
    Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the Lovász Local Lemma. J. ACM 58, 28:1–28 (2011)Google Scholar
  10. 10.
    Kim, D.-W., Na, D.-G., Frank Chen, F.: Unrelated parallel machine scheduling with setup times and a total weighted tardiness objective. Robot. Com. -Int. Manuf. 19, 173–181 (2003)CrossRefGoogle Scholar
  11. 11.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Liu, Z., Cheng, T.C.E.: Minimizing total completion time subject to job release dates and preemption penalties. J. Sched. 7, 313–327 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimiz. 1, 166–190 (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Polacek, L., Svensson, O.: Quasi-polynomial local search for restricted max-min fair allocation. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 726–737. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Potts, C.N., Wassenhove, L.N.V.: Integrating scheduling with batching and lot-sizing: A review of algorithms and complexity. J. Oper. Res. Soc. 43, 395–406 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Schalekamp, F., Sitters, R., van der Ster, S., Stougie, L., Verdugo, V., van Zuylen, A.: Split scheduling with uniform setup times. Arxiv (2012)Google Scholar
  17. 17.
    Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup times. In: SODA, pp. 759–767 (1999)Google Scholar
  18. 18.
    Serafini, P.: Scheduling jobs on several machines with the job splitting property. Oper. Res. 44, 617–628 (1996)CrossRefzbMATHGoogle Scholar
  19. 19.
    Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41, 1318–1341 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Sviridenko, M., Wiese, A.: Approximating the configuration-lp for minimizing weighted sum of completion times on unrelated machines. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 387–398. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    van der Ster, S.: The allocation of scarce resources in disaster relief. MSc-Thesis in Operations Research at VU University Amsterdam (2010)Google Scholar
  22. 22.
    Verschae, J., Wiese, A.: On the configuration-LP for scheduling on unrelated machines. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 530–542. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press (2011)Google Scholar
  24. 24.
    Xing, W., Zhang, J.: Parallel machine scheduling with splitting jobs. Discrete Appl. Math. 103, 259–269 (2000)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • José R. Correa
    • 1
  • Alberto Marchetti-Spaccamela
    • 2
  • Jannik Matuschke
    • 1
  • Leen Stougie
    • 3
  • Ola Svensson
    • 4
  • Víctor Verdugo
    • 1
  • José Verschae
    • 1
  1. 1.Departamento de Ingeniería IndustrialUniversidad de ChileChile
  2. 2.Department of Computer and System SciencesSapienza University of RomeItaly
  3. 3.Department of Econometrics and Operations ResearchVU Amsterdam & CWIThe Netherlands
  4. 4.School of Computer and Communication SciencesEPFLSwitzerland

Personalised recommendations