Advertisement

On Simplex Pivoting Rules and Complexity Theory

  • Ilan Adler
  • Christos Papadimitriou
  • Aviad Rubinstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8494)

Abstract

We show that there are simplex pivoting rules for which it is PSPACE-complete to tell if a particular basis will appear on the algorithm’s path. Such rules cannot be the basis of a strongly polynomial algorithm, unless P = PSPACE. We conjecture that the same can be shown for most known variants of the simplex method. However, we also point out that Dantzig’s shadow vertex algorithm has a polynomial path problem. Finally, we discuss in the same context randomized pivoting rules.

Keywords

linear programming the simplex method computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, I., Karp, R.M., Shamir, R.: A Family of Simplex Variants Solving an m x d Linear Program in Expected Number of Pivot Steps Depending on d Only. Mathematics of Operations Research 11(4), 570–590 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Adler, I., Megiddo, N.: A Simplex Algorithm whose Average Number of Steps is Bounded between Two Quadratic Functions of the Smaller Dimension. Journal of the ACM 32(4), 471–495 (1985)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Amenta, N., Ziegler, G.: Deformed products and maximal shadows of polytopes. In: Advances in Discrete and Computational Geometry, pp. 57–90 (1996)Google Scholar
  4. 4.
    Avis, D., Chvatal, C.: Notes on Bland’s Pivoting Rule. Math. Programming Study 8, 24–34 (1978)CrossRefGoogle Scholar
  5. 5.
    Borgwardt, K.H.: The Average Number of Steps Required by the Simplex Method is Polynomial. Zeitschrift fur Operations Research 26(1), 157–177 (1982)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Chubanov, S.: A strongly polynomial algorithm for linear systems having a binary solution. Math. Programming 134(2), 533–570 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cottle, R., Pang, J.-S., Stone, R.E.: The linear complementarity problem. Academic Press (1992)Google Scholar
  8. 8.
    Dantzig, G.B.: Maximization of a Linear Function of Variables subject to Linear Inequalities (1947); Published in Koopmans, T.C. (ed.): Activity Analysis of Production and Allocation, pp. 339–347. Wiley & Chapman-Hall (1951)Google Scholar
  9. 9.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press and the RAND Corporation (1963)Google Scholar
  10. 10.
    Danzig, G.B., Ford, L.R., Fulkerson, D.R.: A Primal-Dual Algorithm for Linear Programming. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp. 171–181. Princeton University Press (1954)Google Scholar
  11. 11.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19(2), 248–264 (1972)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fukuda, K., Matsui, T.: On the Finiteness of the Criss-cross Method. European Journal of Operations Research 52, 119–124 (1991)CrossRefzbMATHGoogle Scholar
  13. 13.
    Goldberg, P.W., Papadimitriou, C.H., Savani, R.: The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions. ACM Transactions on Economics and Computation 1(2), Article 9 (2013)Google Scholar
  14. 14.
    Goldfarb, D., Reid, J.K.: A Practical Steepest-Edge Simplex Algorithm. Mathematical Programming 12, 361–371 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Jeroslow, R.G.: The Simplex Algorithm with the Pivot Rule of Maximizing Criterion Improvement. Discrete Mathematics 4, 367–377 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kalai, G.: A Subexponential Randomized Simplex Algorithm. In: ACM 24th Symposium on Theory of Computing, pp. 475–482 (1992)Google Scholar
  17. 17.
    Kalai, G., Kleitman, D.: Quasi-polynomial Bounds for the Diameter of Graphs and Polyhedra. Bull. Amer. Math. Soc. 26, 315–316 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  19. 19.
    Karmarkar, N.K.: A New Polynomial-time Algorithm for Linear Programming. Combinatorica 4, 373–395 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Khachian, R.M.: A Polynomial Algorithm in Linear Programming. Doklady Akad. Nauk SSSR 244(5), 1093–1096; Translated in Soviet Math. Doklady, 20, 191–194 (1979)Google Scholar
  21. 21.
    Klee, V., Minty, G.J.: How Good is the Simplex Algorithm? In: Shisha, O. (ed.) Inequalities III, pp. 159–175. Academic Press, New York (1972)Google Scholar
  22. 22.
    Lemke, C.E., Howson, J.T.: Equilibrium points of bimatrix games. SIAM Journal on Applied Mathematics 12(2), 413–423 (1996)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Matousek, J., Sharir, M., Welzl, E.: A Subexponential Bound for Linear programming. Algorithmica 16(4-5), 498–516 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Murty, K.G.: Computational Complexity of Parametric Linear Programming. Mathematical Programming 19, 213–219 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Papadimitriou, C.: Computational Complexity. Addison Wesley (1994)Google Scholar
  26. 26.
    Ross, C.: An Exponential Example for Terlaky’s Pivoting Rule for the Criss-cross Simplex Method. Mathematical Programming 46, 78–94 (1990)Google Scholar
  27. 27.
    Santos, F.: A Counterexample to the Hirsch Conjecture. Annals of Mathematics 176(1), 383–412 (2013)CrossRefGoogle Scholar
  28. 28.
    Smale, S.: On the Average Number of Steps of the Simplex Method of Linear Programming. Mathematical Programming 27, 241–267 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Spielman, D.A., Teng, S.-H.: Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time. Journal of the ACM 51(3), 385–463 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Tardos, E.: A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs. Operations Research 34, 250–256 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Savani, R., von Stengel, B.: Hard to Solve Bimatrix Games. Econometrica 74(2), 397–429 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Terlaky, T.: A Convergent Criss-cross Method. Optimization 16, 683–690 (1990)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Todd, M.J.: Polynomial Expected Behvior of Pivoting Algorithm for Linear Complementarity and Linear Programming Problems. Mathematical Programming 35, 173–192 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Ye, Y.: The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate. Mathematics of Operations Research 36(4), 593–603 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Zionts, S.: The Criss-cross Method for Solving Linear Programming Problems. Management Science 15, 426–445 (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ilan Adler
    • 1
  • Christos Papadimitriou
    • 1
  • Aviad Rubinstein
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations