Box-Constrained Mixed-Integer Polynomial Optimization Using Separable Underestimators

  • Christoph Buchheim
  • Claudia D’Ambrosio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8494)


We propose a novel approach to computing lower bounds for box-constrained mixed-integer polynomial minimization problems. Instead of considering convex relaxations, as in most common approaches, we determine a separable underestimator of the polynomial objective function, which can then be minimized easily over the feasible set even without relaxing integrality. The main feature of our approach is the fast computation of a good separable underestimator; this is achieved by computing tight underestimators monomialwise after an appropriate shifting of the entire polynomial. If the total degree of the polynomial objective function is bounded, it suffices to consider finitely many monomials, the optimal underestimators can then be computed offline and hardcoded. For the quartic case, we determine all optimal monomial underestimators analytically.

In the case of pure integer problems, we perform an extensive experimental evaluation of our approach. It turns out that the proposed branch-and-bound algorithm clearly outperforms all standard software for mixed-integer optimization when variable domains contain more than two values, while still being competitive in the binary case. Compared to approaches based on linearization, our algorithm suffers significantly less from large numbers of monomials. It could minimize complete random polynomials on ten variables with domain { − 10,...,10} in less than a minute on average, while no other approach was able to solve any such instance within one hour of running time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: a practical overview. 4OR 9(4), 329–349 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surveys in Operations Research and Management Science 17, 97–106 (2012)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)CrossRefMathSciNetGoogle Scholar
  4. 4.
    D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: an updated practical overview. Annals OR 204(1), 301–320 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Buchheim, C., Traversi, E.: Separable non-convex underestimators for binary quadratic programming. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 236–247. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed integer programs. Mathematical Programming 131(1), 381–401 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Mathematical Programming 102(3), 559–575 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Mathematical Programming 141(1-2), 435–452 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Mathematical Programming Computation 2(1), 1–19 (2010)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Buchheim, C., De Santis, M., Palagi, L., Piacentini, M.: An exact algorithm for nonconvex quadratic integer minimization using ellipsoidal relaxations. SIAM Journal on Optimization 23(3), 1867–1889 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Rosenberg, I.G.: Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d’Etudes de Recherche Opérationelle 17, 71–74 (1975)zbMATHGoogle Scholar
  12. 12.
    Buchheim, C., Rinaldi, G.: Efficient reduction of polynomial zero-one optimization to the quadratic case. SIAM Journal on Optimization 18(4), 1398–1413 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Mathematical Programming 103, 225–249 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optimization Methods and Software 24, 597–634 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
  16. 16.
    Henrion, D., Lasserre, J.B., Loefberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optimization Methods and Software 24, 761–779 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Shor, N.Z.: Class of global minimum bounds of polynomial functions. Cybernetics 23, 731–734 (1987)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM Journal on Optimization 17, 822–843 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. Algorithmic and quantitative real algebraic geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 60, 83–99 (2001)MathSciNetGoogle Scholar
  20. 20.
    Buchheim, C., D’Ambrosio, C.: Box-constrained mixed-integer polynomial optimization using separable underestimators (full version, in preparation)Google Scholar
  21. 21.
  22. 22.
  23. 23.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christoph Buchheim
    • 1
  • Claudia D’Ambrosio
    • 2
  1. 1.Fakultät für MathematikTechnische Universität DortmundDortmundGermany
  2. 2.LIX CNRS (UMR7161)École PolytechniquePalaiseau CedexFrance

Personalised recommendations