Skip to main content

Network Improvement for Equilibrium Routing

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8494))

Abstract

In routing games, agents pick routes through a network to minimize their own delay. A primary concern for the network designer in routing games is the average agent delay at equilibrium. A number of methods to control this average delay have received substantial attention, including network tolls, Stackelberg routing, and edge removal.

A related approach with arguably greater practical relevance is that of making investments in improvements to the edges of the network, so that, for a given investment budget, the average delay at equilibrium in the improved network is minimized. This problem has received considerable attention in the literature on transportation research. We study a model for this problem introduced in transportation research literature, and present both hardness results and algorithms that obtain tight performance guarantees.

  • In general graphs, we show that a simple algorithm obtains a 4/3-approximation for affine delay functions and an O(p/logp)-approximation for polynomial delay functions of degree p. For affine delays, we show that it is NP-hard to improve upon the 4/3 approximation.

  • Motivated by the practical relevance of the problem, we consider restricted topologies to obtain better bounds. In series-parallel graphs, we show that the problem is still NP-hard. However, we show that there is an FPTAS in this case.

  • Finally, for graphs consisting of parallel paths, we show that an optimal allocation can be obtained in polynomial time.

Supported in part by NSF Awards 1038578 and 1319745, an NSF CAREER Award (1254169), the Charles Lee Powell Foundation, and a Microsoft Research Faculty Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulaal, M., LeBlanc, L.J.: Continuous equilibrium network design models. Transportation Research Part B: Methodological 13(1), 19–32 (1979)

    Article  MathSciNet  Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River (1993)

    MATH  Google Scholar 

  3. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation. Yale University Press (1956)

    Google Scholar 

  4. Bhaskar, U., Ligett, K., Schulman, L.J.: The network improvement problem for equilibrium routing. CoRR abs/1307.3794 (2013)

    Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)

    Google Scholar 

  6. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals of Operations Research 153(1), 235–256 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dantzig, G.B., Harvey, R.P., Lansdowne, Z.F., Robinson, D.W., Maier, S.F.: Formulating and solving the network design problem by decomposition. Transportation Research Part B: Methodological 13(1), 5–17 (1979)

    Article  Google Scholar 

  8. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In: FOCS, pp. 277–285 (2004)

    Google Scholar 

  9. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10, 111–121 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Friesz, T.L., Cho, H.J., Mehta, N.J., Tobin, R.L., Anandalingam, G.: A simulated annealing approach to the network design problem with variational inequality constraints. Transportation Science 26(1), 18–26 (1992)

    Article  MATH  Google Scholar 

  11. Gairing, M., Harks, T., Klimm, M.: Complexity and approximation of the continuous network design problem. CoRR abs/1307.4258 (2013)

    Google Scholar 

  12. Harker, P.T., Friesz, T.L.: Bounding the solution of the continuous equilibrium network design problem. In: Proceedings of the Ninth International Symposium on Transportation and Traffic Theory, pp. 233–252 (1984)

    Google Scholar 

  13. Karakostas, G., Kolliopoulos, S.G.: Edge pricing of multicommodity networks for heterogeneous selfish users. In: FOCS, pp. 268–276 (2004)

    Google Scholar 

  14. Kumar, V.S.A., Marathe, M.V.: Improved results for stackelberg scheduling strategies. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 776–787. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Li, C., Yang, H., Zhu, D., Meng, Q.: A global optimization method for continuous network design problems. Transportation Research Part B: Methodological 46(9), 1144–1158 (2012)

    Article  Google Scholar 

  16. Luathep, P., Sumalee, A., Lam, W.H.K., Li, Z.C., Lo, H.K.: Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach. Transportation Research Part B: Methodological 45(5), 808–827 (2011)

    Article  Google Scholar 

  17. Marcotte, P.: Network design problem with congestion effects: A case of bilevel programming. Mathematical Programming 34(2), 142–162 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  19. Papadimitriou, C.H.: Algorithms, games, and the internet. In: STOC, pp. 749–753 (2001)

    Google Scholar 

  20. Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput. Syst. Sci. 67(2), 341–364 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Roughgarden, T.: Stackelberg scheduling strategies. SIAM Journal on Computing 33(2), 332–350 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Roughgarden, T.: Selfish Routing and the Price of Anarchy. The MIT Press (2005)

    Google Scholar 

  23. Roughgarden, T.: On the severity of Braess’s paradox: designing networks for selfish users is hard. Journal of Computer and System Sciences 72(5), 922–953 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  25. Wang, D.Z.W., Lo, H.K.: Global optimum of the linearized network design problem with equilibrium flows. Transportation Research Part B: Methodological 44(4), 482–492 (2010)

    Article  Google Scholar 

  26. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proc. Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378 (1952)

    Google Scholar 

  27. Yang, H., Bell, M.G.H.: Models and algorithms for road network design: a review and some new developments. Transport Reviews 18(3), 257–278 (1998)

    Article  Google Scholar 

  28. Yang, H., Huang, H.J.: The multi-class, multi-criteria traffic network equilibrium and systems optimum problem. Transportation Research Part B: Methodological 38(1), 1–15 (2004)

    Article  Google Scholar 

  29. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. Journal of Mathematical Analysis and Applications 307(1), 350–369 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yin, Y.: Genetic-algorithms-based approach for bilevel programming models. Journal of Transportation Engineering 126(2), 115–120 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhaskar, U., Ligett, K., Schulman, L.J. (2014). Network Improvement for Equilibrium Routing. In: Lee, J., Vygen, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2014. Lecture Notes in Computer Science, vol 8494. Springer, Cham. https://doi.org/10.1007/978-3-319-07557-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07557-0_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07556-3

  • Online ISBN: 978-3-319-07557-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics