A Linear Algebra Attack to Group-Ring-Based Key Exchange Protocols

  • M. Kreuzer
  • A. D. Myasnikov
  • A. Ushakov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8479)


In this paper we analyze the Habeeb-Kahrobaei-Koupparis-Shpilrain (HKKS) key exchange protocol which uses semidirect products of groups as a platform. We show that the particular instance of the protocol suggested in their paper can be broken via a simple linear algebra attack.


Group-based cryptography semidirect product group ring 

Subject Classifications

94A60 68W30 


  1. 1.
    Habeeb, M., Kahrobaei, D., Koupparis, C., Shpilrain, V.: Public key exchange using semidirect product of (semi)groups. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 475–486. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Kahrobaei, D., Koupparis, C., Shpilrain, V.: A CCA secure cryptosystem using matrices over group rings, (preprint)
  3. 3.
    Kahrobaei, D., Koupparis, C., Shpilrain, V.: Public key exchange using matrices over group rings. Groups, Complexity, Cryptology 5, 97–115 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Miasnikov, A.G., Shpilrain, V., Ushakov, A.: Non-Commutative Cryptography and Complexity of Group-Theoretic Problems. Mathematical Surveys and Monographs. AMS (2011)Google Scholar
  5. 5.
    Myasnikov, A.D., Ushakov, A.: Quantum algorithm for discrete logarithm problem for matrices over finite group rings, (preprint)
  6. 6.
    Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. JACM 27, 701–717 (1980)CrossRefzbMATHGoogle Scholar
  7. 7.
    Shpilrain, V.: Cryptanalysis of Stickel’s key exchange scheme. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 283–288. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Stickel, E.: A new method for exchanging secret keys. In: Proceedings of the Third International Conference on Information Technology and Applications (ICITA 2005). Contemporary Mathematics, vol. 2, pp. 426–430. IEEE Computer Society (2005)Google Scholar
  9. 9.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Kreuzer
    • 2
  • A. D. Myasnikov
    • 1
  • A. Ushakov
    • 1
  1. 1.Stevens Institute of TechnologyHobokenUSA
  2. 2.University of PassauGermany

Personalised recommendations