Improving Intrusion Detection Systems for Wireless Sensor Networks

  • Andriy Stetsko
  • Tobiáš Smolka
  • Vashek Matyáš
  • Martin Stehlík
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8479)


A considerable amount of research has been undertaken in the field of intrusion detection in wireless sensor networks. Researchers proposed a number of relevant mechanisms, and it is not an easy task to select the right ones for a given application scenario. Even when a network operator knows what mechanism to use, it remains an open issue how to configure this particular mechanism in such a way that it is efficient for the particular needs. We propose a framework that optimizes the configuration of an intrusion detection system in terms of detection accuracy and memory usage. There is a variety of scenarios, and a single set of configuration values is not optimal for all of them. Therefore, we believe, such a framework is of a great value for a network operator who needs to optimize an intrusion detection system for his particular needs, e.g., attacker model, environment, node parameters.


Intrusion detection optimization wireless sensor networks 


  1. 1.
    Texas Instruments. CC2420 – 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF transceiver,
  2. 2.
    Stetsko, A., Matyas, V.: Effectiveness metrics for intrusion detection in wireless sensor networks. In: European Conference on Computer Network Defense, pp. 21–28 (2009)Google Scholar
  3. 3.
    Svenda, P., Sekanina, L., Matyas, V.: Evolutionary design of secrecy amplification protocols for wireless sensor networks. In: ACM Conference on Wireless Network Security, pp. 225–236 (2009)Google Scholar
  4. 4.
    Stetsko, A., Stehlik, M., Matyas, V.: Calibrating and comparing simulators for wireless sensor networks. In: IEEE Conference on Mobile Adhoc and Sensor Systems, pp. 733–738 (2011)Google Scholar
  5. 5.
    Wen, Y., Zhang, W., Wolski, R., Chohan, N.: Simulation-based augmented reality for sensor network development. In: ACM Conference on Embedded Networked Sensor Systems, pp. 275–288 (2007)Google Scholar
  6. 6.
    Stetsko, A., Smolka, T., Jurnecka, F., Matyas, V.: On the credibility of wireless sensor network simulations: evaluation of intrusion detection system. In: Conference on Simulation Tools and Techniques, pp. 75–84 (2012)Google Scholar
  7. 7.
    Stetsko, A., Smolka, T., Matyas, V., Stehlik, M.: Improving intrusion detection systems for wireless sensor networks. Technical report FIMU-RS-2014-01: Masaryk University, Faculty of Informatics, Brno, Czech Republic (March 2014)Google Scholar
  8. 8.
    Talbi, E.-G.: Metaheuristics – From Design to Implementation. John Wiley & Sons, Inc. (2009)Google Scholar
  9. 9.
    Rappaport, T.: Wireless communications: Principles and practice, 2nd edn. Prentice Hall PTR (2001)Google Scholar
  10. 10.
    Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: A general purpose evolutionary computation library. In: Conference on Evolution Artificielle, pp. 231–242 (2002)Google Scholar
  11. 11.
    Kopke, A., Swigulski, M., Wessel, K., Willkomm, D., Haneveld, P.T.K., Parker, T.E.V., Visser, O.W., Lichte, H.S., Valentin, S.: Simulating wireless and mobile networks in OMNeT++ the MiXiM vision. In: Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops (2008)Google Scholar
  12. 12.
    OMNeT++ Community,
  13. 13.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: IEEE/ACM Workshop on Grid computing, pp. 4–10 (2004)Google Scholar
  14. 14.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52(12), 2292–2330 (2008)CrossRefGoogle Scholar
  15. 15.
    Roman, R., Zhou, J., Lopez, J.: Applying intrusion detection systems to wireless sensor networks. In: IEEE Consumer Communications and Networking Conference, pp. 640–644 (2006)Google Scholar
  16. 16.
    Onat, I., Miri, A.: An intrusion detection system for wireless sensor networks. In: IEEE Conference on Wireless and Mobile Computing, Networking and Communications, pp. 253–259 (2005)Google Scholar
  17. 17.
    da Silva, A.P.R., Martins, M.H.T., Rocha, B.P.S., Loureiro, A.A.F., Ruiz, L.B., Wong, H.C.: Decentralized intrusion detection in wireless sensor networks. In: ACM International Workshop on Quality of Service & Security in Wireless and Mobile Networks, pp. 16–23 (2005)Google Scholar
  18. 18.
    Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermeasures. Ad Hoc Networks 1(23), 293–315 (2003)CrossRefGoogle Scholar
  19. 19.
    Younis, M., Akkaya, K.: Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks 6(4), 621–655 (2008)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Lee, W.: Intrusion detection in wireless ad-hoc networks. In: Conference on Mobile Computing and Networking, pp. 275–283 (2000)Google Scholar
  21. 21.
    Roosta, T., Pai, S., Chen, P., Sastry, S., Wicker, S.: Inherent security of routing protocols in ad-hoc and sensor networks. In: Global Telecommunications Conference, pp. 1273–1278 (2007)Google Scholar
  22. 22.
    Anjum, F., Subhadrabandhu, D., Sarkar, S., Shetty, R.: On optimal placement of intrusion detection modules in sensor networks. In: Conference on Broadband Networks, pp. 690–699 (2004)Google Scholar
  23. 23.
    Liu, C., Cao, G.: Distributed monitoring and aggregation in wireless sensor networks. In: Conference on Computer Communications, pp. 1–9 (2010)Google Scholar
  24. 24.
    Hassanzadeh, A., Stoleru, R.: Towards optimal monitoring in cooperative IDS for resource constrained wireless networks. In: Conference on Computer Communications and Networks, pp. 1–8 (2011)Google Scholar
  25. 25.
    Ferentinos, K.P., Tsiligiridis, T.A.: Adaptive design optimization of wireless sensor networks using genetic algorithms. Computer Networks 51(4), 1031–1051 (2007)CrossRefzbMATHGoogle Scholar
  26. 26.
    Jourdan, D.B., de Weck, O.L.: Layout optimization for a wireless sensor network using a multi-objective genetic algorithm. In: IEEE Vehicular Technology Conference, pp. 2466–2470 (2004)Google Scholar
  27. 27.
    Nabi, M., Blagojevic, M., Basten, T., Geilen, M., Hendriks, T.: Configuring multi-objective evolutionary algorithms for design-space exploration of wireless sensor networks. In: ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, pp. 111–119 (2009)Google Scholar
  28. 28.
    Khanna, R., Liu, H., Chen, H.H.: Self-organization of sensor networks using genetic algorithms. In: IEEE Conference on Communications, pp. 3377–3382 (2006)Google Scholar
  29. 29.
    Khanna, R., Liu, H., Chen, H.H.: Dynamic optimization of secure mobile sensor networks: A genetic algorithm. In: IEEE Conference on Communications, pp. 3413–3418 (2007)Google Scholar
  30. 30.
    Khanna, R., Liu, H., Chen, H.H.: Reduced complexity intrusion detection in sensor networks using genetic algorithm. In: IEEE Conference on Communications, pp. 1–5 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andriy Stetsko
    • 1
  • Tobiáš Smolka
    • 1
  • Vashek Matyáš
    • 1
  • Martin Stehlík
    • 1
  1. 1.Masaryk UniversityBrnoCzech Republic

Personalised recommendations