Advertisement

Semantic Representation Analysis: A General Framework for Individualized, Domain-Specific and Context-Sensitive Semantic Processing

  • Xiangen Hu
  • Benjamin D. Nye
  • Chuang Gao
  • Xudong Huang
  • Jun Xie
  • Keith Shubeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8534)

Abstract

Language agnostic methods for semantic extraction, encoding, and applications are an increasingly active research area in computational linguistics. This paper introduces an analytic framework for vector-based semantic representation called semantic representation analysis (SRA). The rationale for this framework is considered, as well as some successes and future challenges that must be addressed. A cloud-based implementation of SRA as a domain-specific semantic processing portal has been developed. Applications of SRA in three different areas are discussed: analysis of online text streams, analysis of the impression formation over time, and a virtual learning environment called V-CAEST that is enhanced by a conversation-based intelligent tutoring system. These use-cases show the flexibility of this approach across domains, applications, and languages.

Keywords

Semantic analysis language agnostic domain vocabulary intelligent tutoring systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landauer, T., Dumais, S.: A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review 104(2), 211–240 (1997)CrossRefGoogle Scholar
  2. 2.
    Burgess, C.: From simple associations to the building blocks of language: Modeling meaning in memory with the HAL model. Behavior Research Methods, Instruments, and Computers 30(2), 188–198 (1998)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Jones, M.N., Mewhort, D.J.: Representing word meaning and order information in a composite holographic lexicon. Psychological Review 114(1), 1–37 (2007)CrossRefGoogle Scholar
  4. 4.
    Hu, X., Cai, Z., Graesser, A.C., Ventura, M.: Similarity between semantic spaces. In: 27th Conference of the Cognitive Science Society, pp. 995–1000 (2005)Google Scholar
  5. 5.
    Firth, J.R.: Papers in Linguistics 1934–1951. Oxford University Press, London (1957)Google Scholar
  6. 6.
    Andrews, M., Vigliocco, G., Vinson, D.: Integrating experiential and distributional data to learn semantic representations. Psychological Review 116, 463–498 (2009)CrossRefGoogle Scholar
  7. 7.
    Itagaki, M., Aue, A., Aikawa, T.: Detecting inter-domain semantic shift using syntactic similarity. In: Calzolari, N., Gangemi, A., Maegaard, B., Mariani, J., Odijk, J., Tapias, D. (eds.) 5th International Conference on Language Resources and Evaluation, pp. 2399–2402. European Language Resources Association, Paris (2006)Google Scholar
  8. 8.
    Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers 36, 402–407 (2004)CrossRefGoogle Scholar
  9. 9.
    Zeno, S.M., Ivens, S.H., Millard, R.T., Duvvuri, R.: The educator’s word frequency guide. Touchstone Applied Science, Breward (1995)Google Scholar
  10. 10.
    Huang, X., Nye, B.D., Xie, J., Wang, J., Liao, Y., Hu, X.: Evaluating a method to compare human and machine-generated semantic spaces. Submitted for Review (forthcoming)Google Scholar
  11. 11.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: Linking text sentiment to public opinion time series. In: Hearst, M., Cohen, W., Gosling, S. (eds.) 4th International AAAI Conference on Weblogs and Social Media, pp. 122–129. AAAI Press, Menlo Park (2010)Google Scholar
  12. 12.
    Mishne, G., Glance, N.: Leave a reply: An analysis of weblog comments. In: 3rd Annual Workshop on the Weblogging Ecosystem, Edinburgh, Scotland (2006)Google Scholar
  13. 13.
    Lee, C.H.: Mining spatio-temporal information on microblogging streams using a density-based online clustering method. Expert Systems with Applications 39(10), 9623–9641 (2012)CrossRefGoogle Scholar
  14. 14.
    Alsumait, L., Barbará, D., Domeniconi, C.: On-line LDA: Adaptive topic models for mining text streams with applications to topic detection and tracking. In: Giannotti, F., Gunopulos, D., Turini, F., Zaniolo, C., Ramakrishnan, N., Wu, X. (eds.) 8th IEEE International Conference on Data Mining, pp. 3–12 (2008)Google Scholar
  15. 15.
    Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: Elmagarmid, A.K., Agrawal, D. (eds.) 2010 ACM SIGMOD International Conference on Management of Data, pp. 1155–1157 (2010)Google Scholar
  16. 16.
    Chen, J., Yu, J., Shen, Y.: Towards topic trend prediction on a topic evolution model with social connection. In: Zhong, N., Gong, Z., Cheung, Y., Lingras, P., Szczepaniak, P., Suzuki, E. (eds.) IEEE International Joint Conferences on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 153–157 (2012)Google Scholar
  17. 17.
    Xie, J., Hu, X.: A method to explore topic evolution in online text streams. Masters Thesis manuscript, University of Memphis (2014)Google Scholar
  18. 18.
    Kleinberg, J.: Temporal dynamics of on-line information streams. Data Mining Knowledge Discovery 7(4), 373–397 (2006)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ganesh, M., Reddy, C., Manikandan, N.: TDPA: Trend Detection and Predictive Analytics. International Journal on Computer Science and Engineering 3(3), 1033–1039 (2011)Google Scholar
  20. 20.
    Graesser, A.C., Chipman, P., Haynes, B., Olney, A.: AutoTutor: An intelligent tutoring system with mixed-initiative dialogue. IEEE Transactions on Education 48(4), 612–618 (2005)CrossRefGoogle Scholar
  21. 21.
    Aleven, V., Koedinger, K.: An effective metacognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science 26(2), 147–179 (2002)CrossRefGoogle Scholar
  22. 22.
    Graesser, A.C., Person, N.K.: Question asking during tutoring. American Educational Research Journal 31(1), 104–137 (1994)CrossRefGoogle Scholar
  23. 23.
    Graesser, A.C., D’Mello, S., Hu, X., Cai, Z., Olney, A., Morgan, B.: AutoTutor. In: McCarthy, P., Boonthum, C. (eds.) Applied Natural Language Processing and Content Analysis: Identification, Investigation and Resolution, pp. 169–187. IGI Global, Hershey (2012)Google Scholar
  24. 24.
    Nye, B.D.: Integrating GIFT and AutoTutor with Sharable Knowledge Objects (SKO). In: Sottilare, R.A., Holden, H.K. (eds.) Artificial Intelligence in Education (AIED) 2013 Workshop on GIFT, pp. 54–61. CEUR (2013)Google Scholar
  25. 25.
    Hu, X., Cai, Z., Han, L., Craig, S.D., Wang, T., Graesser, A.C.: AutoTutor Lite. In: Dimitrova, V., Mizoguchi, R., Du Boulay, B., Graesser, A.C. (eds.) Artificial Intelligence in Education (AIED), p. 802. IOS Press, Amsterdam (2009)Google Scholar
  26. 26.
    Landauer, T., Foltz, P., Laham, D.: Introduction to latent semantic analysis. Discourse Processes 25, 259–284 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xiangen Hu
    • 1
    • 2
  • Benjamin D. Nye
    • 1
  • Chuang Gao
    • 2
  • Xudong Huang
    • 1
  • Jun Xie
    • 1
  • Keith Shubeck
    • 1
  1. 1.The University of MemphisMemphisUSA
  2. 2.Central China Normal UniversityChina

Personalised recommendations