Physiological Synchronization Is Associated with Narrative Emotionality and Subsequent Behavioral Response

  • Bethany K. Bracken
  • Veronika Alexander
  • Paul J. Zak
  • Victoria Romero
  • Jorge A. Barraza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8534)


Neurophysiological compliance is a correlation of neurophysiological measures (synchronicity) between individuals. Higher compliance among team members is related to better performance, and higher synchronicity occurs during emotional moments of a stimulus. The aim of the current study is to examine whether synchrony may be observable via peripheral nervous system (PNS) activity. We used inter-subject correlation (ISC) analysis to assess whether synchronicity of PNS measures are related to stimulus emotionality or similarity in behavioral responses. Participants viewed a 100-second emotional video, followed by an appeal to donate experimental earnings to a related charity. We found high ISC for cardiac and electrodermal activity (EDA) between donors versus non-donors. For both groups, we found an association between ISC of cardiac activity and emotional moments in the stimulus. For non-donors we found an association between ISC of EDA and emotional moments. Our findings indicate that PNS measures yield similar results to neurophysiological measures.


Cognitive Modeling Perception Emotion and Interaction Physiological Synchronization Inter-Subject Correlation Analysis RR-Interval Skin Conductance Level Narrative 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walker, A.D., Muth, E.R., Switzer, F.S., Rosopa, P.J.: Predicting team performance in a dynamic environment: A team psychophysiological approach to measuring cognitive readiness. Journal of Cognitive Engineering and Decision Making 7, 69–82 (2013)CrossRefGoogle Scholar
  2. 2.
    Smith, T.J., Smith, K.U., Salvendy, G.: Feedback-control mechanisms of human behavior. Handbook of human factors, pp. 251–293 (1987)Google Scholar
  3. 3.
    Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., Garnero, L.: Inter-brain synchronization during social interaction. PloS One 5, e12166 (2010)Google Scholar
  4. 4.
    Lindenberger, U., Li, S.-C., Gruber, W., Müller, V.: Brains swinging in concert: Cortical phase synchronization while playing guitar. BMC Neuroscience 10, 22 (2009)CrossRefGoogle Scholar
  5. 5.
    Holper, L., Scholkmann, F., Wolf, M.: Between-brain connectivity during imitation measured by fnirs. Neuroimage 63, 212–222 (2012)CrossRefGoogle Scholar
  6. 6.
    Yun, K., Watanabe, K., Shimojo, S.: Interpersonal body and neural synchronization as a marker of implicit social interaction. Scientific Reports 2 (2012)Google Scholar
  7. 7.
    Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., Malach, R.: Intersubject synchronization of cortical activity during natural vision. Science 303, 1634–1640 (2004)CrossRefGoogle Scholar
  8. 8.
    Dmochowski, J.P., Sajda, P., Dias, J., Parra, L.C.: Correlated components of ongoing eeg point to emotionally laden attention–a possible marker of engagement? Frontiers in Human Neuroscience 6 (2012)Google Scholar
  9. 9.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews 29, 169–195 (1999)CrossRefGoogle Scholar
  10. 10.
    Jensen, O., Tesche, C.D.: Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience 15, 1395–1399 (2002)CrossRefGoogle Scholar
  11. 11.
    Ray, W.J., Cole, H.W.: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228, 750–752 (1985)CrossRefGoogle Scholar
  12. 12.
    Berka, C., Levendowski, D.J., Lumicao, M.N., Yau, A., Davis, G., Zivkovic, V.T., Olmstead, R.E., Tremoulet, P.D., Craven, P.L.: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation, Space, and Environmental Medicine 78, B231–B244 (2007)Google Scholar
  13. 13.
    Sassaroli, A., Zheng, F., Hirshfield, L.M., Girouard, A., Solovey, E.T., Jacob, R.J., Fantini, S.: Discrimination of mental workload levels in human subjects with functional near-infrared spectroscopy. Journal of Innovative Optical Health Sciences 1, 227–237 (2008)CrossRefGoogle Scholar
  14. 14.
    Di Mascio, A., Boyd, R.W., Greenblatt, M., Solomon, H.C.: The psychiatric interview: A sociophysiologic study. Diseases of the Nervous System 16, 4 (1955)Google Scholar
  15. 15.
    Kaplan, H.B., Burch, N.R., Bloom, S.W.: Physiological covariation and sociometric relationships in small peer groups. Psychobiological Approaches to Social Behavior, 92–109 (1964)Google Scholar
  16. 16.
    Levenson, R.W., Gottman, J.M.: Marital interaction: Physiological linkage and affective exchange. Journal of Personality and Social Psychology 45, 587 (1983)CrossRefGoogle Scholar
  17. 17.
    Barraza, J.A., Alexander, V., Beavin, L.E., Terris, E., Zak, P.J.: The heart of the story: Peripheral physiology during narrative exposure predicts charitable giving. Psychological Science (2014) (submitted)Google Scholar
  18. 18.
    Brainard, D.H.: The psychophysics toolbox. Spatial Vision 10, 433–436 (1997)CrossRefGoogle Scholar
  19. 19.
    Barraza, J.A., Zak, P.J.: Empathy toward strangers triggers oxytocin release and subsequent generosity. Annals of the New York Academy of Sciences 1167, 182–189 (2009)CrossRefGoogle Scholar
  20. 20.
    Norris, C.J., Larsen, J.T., Cacioppo, J.T.: Neuroticism is associated with larger and more prolonged electrodermal responses to emotionally evocative pictures. Psychophysiology 44, 823–826 (2007)CrossRefGoogle Scholar
  21. 21.
    Batson, C.D., Sager, K., Garst, E., Kang, M., Rubchinsky, K., Dawson, K.: Is empathy-induced helping due to self–other merging? Journal of Personality and Social Psychology 73, 495 (1997)CrossRefGoogle Scholar
  22. 22.
    Figner, B., Murphy, R.O.: Using skin conductance in judgment and decision making research. In: A Handbook of Process Tracing Methods for Decision Research: A Critical Review and User’s Guide, pp. 163–184 (2010)Google Scholar
  23. 23.
    Hasson, U., Furman, O., Clark, D., Dudai, Y., Davachi, L.: Enhanced intersubject correlations during movie viewing correlate with successful episodic encoding. Neuron 57, 452–462 (2008)CrossRefGoogle Scholar
  24. 24.
    Kreibig, S.D., Wilhelm, F.H., Roth, W.T., Gross, J.J.: Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology 44, 787–806 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bethany K. Bracken
    • 1
  • Veronika Alexander
    • 2
  • Paul J. Zak
    • 2
  • Victoria Romero
    • 1
  • Jorge A. Barraza
    • 2
  1. 1.Charles River Analytics, Inc.CambridgeUSA
  2. 2.Center for Neuroeconomics StudiesClaremont Graduate UniversityClaremontUSA

Personalised recommendations