Skip to main content

Model-Based Identification of Anatomical Boundary Conditions in Living Tissues

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2014)

Abstract

In this paper, we present a novel method dealing with the identification of boundary conditions of a deformable organ, a particularly important step for the creation of patient-specific biomechanical models of the anatomy. As an input, the method requires a set of scans acquired in different body positions. Using constraint-based finite element simulation, the method registers the two data sets by solving an optimization problem minimizing the energy of the deformable body while satisfying the constraints located on the surface of the registered organ. Once the equilibrium of the simulation is attained (i.e. the organ registration is computed), the surface forces needed to satisfy the constraints provide a reliable estimation of location, direction and magnitude of boundary conditions applied to the object in the deformed position. The method is evaluated on two abdominal CT scans of a pig acquired in flank and supine positions. We demonstrate that while computing a physically admissible registration of the liver, the resulting constraint forces applied to the surface of the liver strongly correlate with the location of the anatomical boundary conditions (such as contacts with bones and other organs) that are visually identified in the CT images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadian, H., Mottershead, J., Friswell, M.: Boundary condition identification by solving characteristic equations. J. of Sound and Vibration 247(5), 755–763 (2001)

    Article  Google Scholar 

  2. Suzuki, A., Kamiya, K., Yasuda, K.: Identification technique for nonlinear boundary conditions of a circular plate. J. of Sound and Vibration 289(1-2), 130–147 (2006)

    Article  MATH  Google Scholar 

  3. Ahmadian, H., Zamani, A.: Identification of nonlinear boundary effects using nonlinear normal modes. Mechanical Systems and Signal Processing 23(6), 2008–2018 (2009); Special Issue: Inverse Problems

    Google Scholar 

  4. Carter, T.J., Sermesant, M., Cash, D.M., Barratt, D.C., Tanner, C., Hawkes, D.J.: Application of soft tissue modelling to image-guided surgery. Medical Engineering & Physics 27(10), 893–909 (2005)

    Article  Google Scholar 

  5. Ferrant, M., Nabavi, A., Macq, B., Jolesz, F.A., Kikinis, R., Warfield, S.K.: Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans. on Medical Imaging 20(12), 1384–1397 (2001)

    Article  Google Scholar 

  6. Veress, A.I., Phatak, N., Weiss, J.A.: Deformable image registration with Hyperelastic Warping. In: Handbook of Biomedical Image Analysis, pp. 487–533 (2005)

    Google Scholar 

  7. Brock, K.K., Sharpe, M.B., Dawson, L.A., Kim, S.M., Jaffray, D.A.: Accuracy of finite element model-based multi-organ deformable image registration. Medical Physics 32(6), 1647 (2005)

    Article  Google Scholar 

  8. Lin, T., Guyader, C.L., Dinov, I., Thompson, P., Toga, A., Vese, L.: A Landmark-Based Image Registration Model using a Nonlinear Elasticity Smoother for Mapping Mouse Atlas to Gene Expression Data. Sciences-New York (2009)

    Google Scholar 

  9. Dumpuri, P., Thompson, R.C., Dawant, B.M., Cao, A., Miga, M.I.: An atlas-based method to compensate for brain shift: Preliminary results. Medical Image Analysis 11(2), 128–145 (2007)

    Article  Google Scholar 

  10. Gilles, B., Pai, D.K.: Fast musculoskeletal registration based on shape matching. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 822–829. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Marami, B., Sirouspour, S., Capson, D.: Model-based deformable registration of preoperative 3D to intraoperative low-resolution 3D and 2D sequences of MR images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 460–467. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Hu, Y., Ahmed, H.U., Taylor, Z., Allen, C., Emberton, M., Hawkes, D., Barratt, D.: MR to ultrasound registration for image-guided prostate interventions. Medical Image Analysis 16(3), 687–703 (2012)

    Article  Google Scholar 

  13. Courtecuisse, H., Peterlik, I., Trivisonne, R., Duriez, C., Cotin, S.: Constraint-based simulation for non-rigid real-time registration. In: Medicine Meets Virtual Reality, MMVR21, California, US (to appear, February 2014)

    Google Scholar 

  14. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. of 3rd Conf. on 3D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  15. Vlachos, A., Peters, J., Boyd, C., Mitchell, J.L.: Curved PN triangles. In: Symposium on Interactive 3D Graphics, pp. 159–166 (2001)

    Google Scholar 

  16. Duriez, C., Dubois, F., Kheddar, A., Andriot, C.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions on Visualization and Computer Graphics 12(1), 36–47 (2006)

    Article  Google Scholar 

  17. Müller, M., Gross, M.: Interactive virtual materials. In: GI 2004: Proc. of Graphics Interface 2004, School of Computer Science, University of Waterloo, Ontario, Canada, pp. 239–246. Canadian Human-Computer Communications Society (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peterlik, I., Courtecuisse, H., Duriez, C., Cotin, S. (2014). Model-Based Identification of Anatomical Boundary Conditions in Living Tissues. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2014. Lecture Notes in Computer Science, vol 8498. Springer, Cham. https://doi.org/10.1007/978-3-319-07521-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07521-1_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07520-4

  • Online ISBN: 978-3-319-07521-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics