Skip to main content

2D-3D Pose Tracking of Rigid Instruments in Minimally Invasive Surgery

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8498))

Abstract

Instrument localization and tracking is an important challenge for advanced computer assisted techniques in minimally invasive surgery and image-based solutions to instrument localization can provide a non-invasive, low cost solution. In this study, we present a novel algorithm capable of recovering the 3D pose of laparoscopic surgical instruments combining constraints from a classification algorithm, multiple point features, stereo views (when available) and a linear motion model to robustly track the tool in surgical videos. We demonstrate the improved robustness and performance of our algorithm with optically tracked ground truth and additionally qualitatively demonstrate its performance on in vivo images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azimian, H., Patel, R., Naish, M.: On constrained manipulation in robotics-assisted minimally invasive surgery. In: 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 650–655 (2010)

    Google Scholar 

  2. van der Putten Westebring, E.P., Goossens, R.H.M., Jakimowicz, J.J., Dankelman, J.: Haptics in minimally invasive surgery a review. Minimally Invasive Therapy & Allied Technologies 17(1), 3–16 (2008)

    Article  Google Scholar 

  3. Speidel, S., Sudra, G., Senemaud, J., Drentschew, M., Müller-Stich, B.P., Gutt, C., Dillmann, R.: Recognition of risk situations based on endoscopic instrument tracking and knowledge based situation modeling. In: Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling, vol. 6918 (2008)

    Google Scholar 

  4. Chmarra, M.K., Grimbergen, C.A., Dankelman, J.: Systems for tracking minimally invasive surgical instruments. Minimally Invasive Therapy & Allied Technologies 16(6), 328–340 (2007)

    Article  Google Scholar 

  5. Mirota, D.J., Ishii, M., Hager, G.D.: Vision-based navigation in image-guided interventions. Annual Review of Biomedical Engineering 13, 297–319 (2011)

    Article  Google Scholar 

  6. Stoyanov, D.: Surgical vision. Annals of Biomedical Engineering 40(2), 332–345 (2012)

    Article  MathSciNet  Google Scholar 

  7. Uecker, D.R., Lee, C., Wang, Y.F., Wang, Y.: Automated instrument tracking in robotically assisted laparoscopic surgery. Journal of Image Guided Surgery 1(6), 308–325 (1995) PMID: 9080352

    Google Scholar 

  8. Sznitman, R., Ali, K., Richa, R., Taylor, R., Hager, G., Fua, P.: Data-driven visual tracking in retinal microsurgery. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 568–575. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Richa, R., Balicki, M., Meisner, E., Sznitman, R., Taylor, R., Hager, G.: Visual tracking of surgical tools for proximity detection in retinal surgery. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 55–66. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Zhao, T., Zhao, W., Halabe, D.J., Hoffman, B.D., Nowlin, W.C.: Fiducial marker design and detection for locating surgical instrument in images. Patent US 068 395, 07 08 (2010)

    Google Scholar 

  11. Voros, S., Long, J., Cinquin, P.: Automatic detection of instruments in laparoscopic images: A first step towards high-level command of robotic endoscopic holders. The International Journal of Robotics Research 26(11-12), 1173–1190 (2007)

    Article  Google Scholar 

  12. Reiter, A., Allen, P.K., Zhao, T.: Appearance learning for 3d tracking of robotic surgical tools. The International Journal of Robotics Research (2013)

    Google Scholar 

  13. Austin, R., Allen, P.K., Tao, Z.: Articulated surgical tool detection using virtually-rendered templates. Computer Assisted Radiology and Surgery (2012)

    Google Scholar 

  14. Allan, M., Ourselin, S., Thompson, S., Hawkes, D.J., Kelly, J., Stoyanov, D.: Toward detection and localization of instruments in minimally invasive surgery. IEEE Transactions on Biomedical Engineering 60(4), 1050–1058 (2013)

    Article  Google Scholar 

  15. Prisacariu, V.A., Reid, I.D.: PWP3D: Real-Time segmentation and tracking of 3D objects. Int. J. Computer Vision 98(3), 335–354 (2012)

    Article  MathSciNet  Google Scholar 

  16. Maier-Hein, L., Mountney, P., Bartoli, A., Elhawary, H., Elson, D., Groch, A., Kolb, A., Rodrigues, M., Sorger, J., Speidel, S., Stoyanov, D.: Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Medical Image Analysis 17(8), 974–996 (2013)

    Article  Google Scholar 

  17. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. Int. J. Comput. Vision 72(2), 195–215 (2007)

    Article  Google Scholar 

  18. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  19. Prince, S.: Computer Vision: Models Learning and Inference. Cambridge University Press (2012)

    Google Scholar 

  20. Tsai, R., Lenz, R.: A new technique for fully autonomous and efficient 3d robotics hand/eye calibration. IEEE Transactions on Robotics and Automation 5(3), 345–358 (1989)

    Article  Google Scholar 

  21. Pezzementi, Z., Voros, S., Hager, G.D.: Articulated object tracking by rendering consistent appearance parts. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3940–3947 (May 2009)

    Google Scholar 

  22. Prisacariu, V.A., Reid, I.: Nonlinear shape manifolds as shape priors in level set segmentation and tracking. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 2185–2192. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Allan, M. et al. (2014). 2D-3D Pose Tracking of Rigid Instruments in Minimally Invasive Surgery. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2014. Lecture Notes in Computer Science, vol 8498. Springer, Cham. https://doi.org/10.1007/978-3-319-07521-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07521-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07520-4

  • Online ISBN: 978-3-319-07521-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics