Skip to main content

GPmap: A Unified Framework for Robotic Mapping Based on Sparse Gaussian Processes

  • Chapter
Field and Service Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 105))

Abstract

This paper proposes a unified framework called GPmap for reconstructing surface meshes and building continuous occupancy maps using sparse Gaussian processes. Previously, Gaussian processes have been separately applied for surface reconstruction and occupancy mapping with different function definitions. However, by adopting the signed distance function as the latent function and applying the probabilistic least square classification, we solve two different problems in a single framework. Thus, two different map representations can be obtained at a single cast, for instance, an object shape for grasping and an occupancy map for obstacle avoidance. Another contribution of this paper is reduction of computational complexity for scalability. The cubic computational complexity of Gaussian processes is a well-known issue limiting its applications for large-scale data. We address this by applying the sparse covariance function which makes distant data independent and thus divides both training and test data into grid blocks of manageable sizes. In contrast to previous work, the size of grid blocks is determined in a principled way by learning the characteristic length-scale of the sparse covariance function from the training data. We compare theoretical complexity with previous work and demonstrate our method with structured indoor and unstructured outdoor datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borrmann, D., Nüchter, A.: The robotic 3d scan repository of Jacobs University, http://kos.informatik.uni-osnabrueck.de/3Dscans/

  2. Dragiev, S., Toussaint, M., Gienger, M.: Gaussian process implicit surfaces for shape estimation and grasping. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2845–2850 (2011)

    Google Scholar 

  3. Hadsell, R., Bagnell, J., Huber, D., Hebert, M.: Space-carving kernels for accurate rough terrain estimation. The International Journal of Robotics Research 29(8), 981–996 (2010)

    Article  Google Scholar 

  4. Herbert, M., Caillas, C., Krotkov, E., Kweon, I.S., Kanade, T.: Terrain mapping for a roving planetary explorer. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 997–1002 (1989)

    Google Scholar 

  5. Herbrich, R., Lawrence, N.D., Seeger, M.: Fast sparse Gaussian process methods: The informative vector machine. In: Advances in Neural Information Processing Systems 14, pp. 609–616. MIT Press (2002)

    Google Scholar 

  6. Hollinger, G., Englot, B., Hover, F., Mitra, U., Sukhatme, G.: Active planning for underwater inspection and the benefit of adaptivity. The International Journal of Robotics Research 32(1), 3–18 (2013)

    Article  Google Scholar 

  7. Hornung, A.: Octomap 3d scan dataset, http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/

  8. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: an efficient probabilistic 3d mapping framework based on octrees. In: Autonomous Robots, pp. 1–18 (2013)

    Google Scholar 

  9. Kim, S., Kim, J.: Towards large-scale occupancy map building using Dirichlet and Gaussian processes. In: Proceedings of the Australasian Conference on Robotics and Automation (2011)

    Google Scholar 

  10. Kim, S., Kim, J.: Building large-scale occupancy maps using an infinite mixture of Gaussian process experts. In: Proceedings of the Australasian Conference on Robotics and Automation (2012)

    Google Scholar 

  11. Kim, S., Kim, J.: Building occupancy maps with a mixture of Gaussian processes. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4756–4761 (2012)

    Google Scholar 

  12. Kim, S., Kim, J.: Continuous occupancy maps using overlapping local gaussian processes. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  13. Kim, S., Kim, J.: Occupancy mapping and surface reconstruction using local gaussian processes with kinect sensors. IEEE Transactions on Cybernetics 43(5), 1335–1346 (2013)

    Article  Google Scholar 

  14. Lang, T., Plagemann, C., Burgard, W.: Adaptive non-stationary kernel regression for terrain modeling. In: Proceedings of Robotics: Science and Systems (2007)

    Google Scholar 

  15. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics 21, 163–169 (1987)

    Article  Google Scholar 

  16. Melkumyan, A., Ramos, F.: A sparse covariance function for exact Gaussian process inference in large datasets. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 1936–1942 (2009)

    Google Scholar 

  17. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985)

    Google Scholar 

  18. O’Callaghan, S., Ramos, F.: Continuous occupancy mapping with integral kernels. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1494–1500 (2011)

    Google Scholar 

  19. O’Callaghan, S., Ramos, F.: Gaussian process occupancy maps. The International Journal of Robotics Research 31(1), 42–62 (2012)

    Article  Google Scholar 

  20. Plagemann, C., Mischke, S., Prentice, S., Kersting, K., Roy, N., Burgard, W.: Learning predictive terrain models for legged robot locomotion. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3545–3552 (2008)

    Google Scholar 

  21. Platt, J.C.: Probabilities for SV Machines. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (2000)

    Google Scholar 

  22. Pomerleau, F., Liu, M., Colas, F., Siegwart, R.: Challenging data sets for point cloud registration algorithms. The International Journal of Robotics Research 31(14), 1705–1711 (2012)

    Article  Google Scholar 

  23. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  24. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)

    Google Scholar 

  25. Seeger, M., Williams, C.K., Lawrence, N.D.: Fast forward selection to speed up sparse Gaussian process regression. In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (2003)

    Google Scholar 

  26. Shen, Y., Ng, A., Seeger, M.: Fast Gaussian process regression using kd-trees. In: Advances in Neural Information Processing Systems 18, pp. 1225–1232. MIT Press (2006)

    Google Scholar 

  27. Smith, M., Posner, I., Newman, P.: Adaptive compression for 3d laser data. The International Journal of Robotics Research 30(7), 914–935 (2011)

    Article  Google Scholar 

  28. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D.J., Rasmussen, C.E.: Derivative observations in Gaussian process models of dynamic systems. In: Advances in Neural Information Processing Systems 13, pp. 1057–1064. MIT Press (2003)

    Google Scholar 

  29. Steder, B., Kümmerle, R.: The outdoor dataset of the University of Freiburg, http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/

  30. Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte, H.: Gaussian process modeling of large-scale terrain. Journal of Field Robotics 26(10), 812–840 (2009)

    Article  MATH  Google Scholar 

  31. Williams, O., Fitzgibbon, A.: Gaussian process implicit surfaces. In: Proceedings of the Workshop on Gaussian Processes in Practice (2006)

    Google Scholar 

  32. Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: A probabilistic, flexible, and compact 3D map representation for robotic systems. In: Proceedings of the ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soohwan Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, S., Kim, J. (2015). GPmap: A Unified Framework for Robotic Mapping Based on Sparse Gaussian Processes. In: Mejias, L., Corke, P., Roberts, J. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-07488-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07488-7_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07487-0

  • Online ISBN: 978-3-319-07488-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics