Skip to main content

Change of Numéraire and a Jump-Diffusion Option Pricing Formula

  • Chapter
  • First Online:
Nonlinear Economic Dynamics and Financial Modelling

Abstract

We note that a general change in numéraire formula in Geman, El Karoui and Rochet (1995) also applies to the case where the stock price and the bond price dynamics are driven by semimartingales with discontinuities. It is observed in the markets that both stock and bond prices generally exhibit discontinuities. We thus consider the case where both the stock price and bond price processes contain a compound Poisson component, in addition to a continuous log-normally distributed component, and we extend the option pricing formula in Geman et al. to this situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Applebaum, D. (2004). Lévy processes and stochastic calculus. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ball, C., & Torus, W. (1985). On jumps in common stock prices and their impact on call option pricing. Journal of Finance, 40, 155–173.

    Article  Google Scholar 

  • Björk, T., Kabanov, Y., & Runggaldier, W. J. (1997a). Bond market structure in the presence of marked point processes. Mathematical Finance, 7(2), 211–223.

    Article  Google Scholar 

  • Björk, T., Di Masi, G., Kabanov, Y., & Runggaldier, W. J. (1997b). Towards a general theory of bond markets. Finance and Stochastics, 1, 141–174.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1972). The pricing of options and corporate Liabilities. Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Cheang, G. H. L., & Chiarella, C. (2011). Exchange options under jump-diffusion dynamics. Applied Mathematical Finance, 18(3), 245–276.

    Article  Google Scholar 

  • Chiarella, C., & Nikitipoulos-Sklibosios, C. (2003). A class of jump-diffusion bond pricing models within the HJM framework. Asia-Pacific Financial Markets, 10, 87–127.

    Article  Google Scholar 

  • Colwell, D. B., & Elliott, R. J. (1993). Discontinuous asset prices and non-attainable contingent claims. Mathematical Finance, 3, 295–308.

    Article  Google Scholar 

  • Cont, R., & Tankov, P. (2004a). Financial modelling with jump processes. London: Chapman and Hall/CRC.

    Google Scholar 

  • Cont, R., & Tankov, P. (2004b). Calibration of jump-diffusion option-pricing models: a robust non-parametric approach. Journal of Computational Finance, 7, 1–49.

    Google Scholar 

  • Das, S. R. (2002). The surprise element: Jumps in interest rates. Journal of Econometrics, 106, 27–65.

    Article  Google Scholar 

  • Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6), 1343–1376.

    Article  Google Scholar 

  • Dungey, M., McKenzie, M., & Smith, V. (2007). Empirical evidence on jumps in the term structure of the U.S. treasury market. Working Paper, CAMA.

    Google Scholar 

  • Daley, D. J., & Vere-Jones, D. (1988). An introduction to the theory of point processes. New York: Springer.

    Google Scholar 

  • Geman, H., El Karoui, N., & Rochet, J.-C. (1995). Change of numéraire, changes of probability measure and option pricing. Journal of Applied Probability, 32(2), 443–459.

    Article  Google Scholar 

  • Harrison, J. M., & Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continous trading. Stochastic Processes and Applications, 11, 215–260.

    Article  Google Scholar 

  • Heath, D., Jarrow, R., & Morton, A. J. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica, 60(1), 77–105.

    Article  Google Scholar 

  • Jeanblanc, M., Klöppel, S., & Miyahara, Y. (2007). Minimal \(F^Q\)-martingale measures for exponential Lévy processes. Annals of Applied Probability, 17, 1615–1638.

    Article  Google Scholar 

  • Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.

    Article  Google Scholar 

  • Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3, 125–144.

    Article  Google Scholar 

  • Miyahara, Y. (2001). Geometric Lévy process & MEMM pricing model and related estimation problems. Asia-Pacific Financial Markets, 8, 45–60.

    Article  Google Scholar 

  • Protter, P. (1990). Stochastic integration and differential equations: A new approach. Berlin: Springer.

    Book  Google Scholar 

  • Runggaldier, W. J. (2003). Jump diffusion models. In S. T. Rachev (Ed.), Handbook of heavy tailed distributions in finance (pp. 169–209). North-Holland: Elsevier.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. L. Cheang .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, we state a result involving the distribution of the arrival times \((T_1, T_2,\dots , T_n)\) of a non-homogeneous Poisson process \(N_T\) conditioned on \(n\) arrivals \(N_T = n\) over the interval \((0, T]\).

Lemma A.1

Consider a non-homogeneous Poisson process \(N_t\) with intensity \(\lambda _t\) under some probability measure \(\mathbb {P}\). Let the time of the \(i\)th arrival be \(T_i = t_i\) where \(0 < t_1 < t_2 < \cdots < t_n \le T\). Conditioned on \(N_T = n\), the joint density of the times of the arrivals is

$$\begin{aligned} g_{{\mathbb P}} (t_1,\cdots ,t_n) = \left\{ \begin{array}{ll} \frac{n! \prod _{i=1}^n \lambda _{t_i}}{\left[ \int _0^T \lambda _t \mathrm{{d}}t\right] ^n} &{} {f\!or} \; 0 < t_1 < t_2 < \cdots < t_n \le T,\\ 0 &{} { otherwise.}\end{array} \right. \end{aligned}$$
(A.1)

The proof can be found in standard texts on point processes, e.g. Daley and Vere-Jones (1988). In the context of Theorem 3 in this paper, for \(0 < t_1 < t_2 < \cdots < t_n \le T\), the joint density \(g_{\mathbb Q_S} (t_1,\ldots ,t_n) = n!\frac{ \prod _{i=1}^n \hat{\lambda }_{t_i}}{\left[ \int _0^T \hat{\lambda }_t \mathrm{{d}}t\right] ^n}\) and \(g_{\mathbb Q_P} (t_1,\ldots ,t_n) = n!\frac{\prod _{i=1}^n \tilde{\lambda }_{t_i}}{\left[ \int _0^T \tilde{\lambda }_t \mathrm{{d}}t\right] ^n}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheang, G.H.L., Teh, GA. (2014). Change of Numéraire and a Jump-Diffusion Option Pricing Formula. In: Dieci, R., He, XZ., Hommes, C. (eds) Nonlinear Economic Dynamics and Financial Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-07470-2_21

Download citation

Publish with us

Policies and ethics