VELOS: Crowd Modeling for Enhanced Ship Evacuation Analysis

  • Konstantinos V. Kostas
  • Alexandros-Alvertos Ginnis
  • Constantinos G. Politis
  • Panagiotis D. Kaklis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8526)


Virtual Environment for Life On Ships (VELOS) is a multi-user Virtual Reality (VR) system that supports designers to assess (early in the design process) passenger and crew activities on a ship for both normal and hectic conditions of operations and to improve the ship design accordingly [1]. Realistic simulations of behavioral aspects of crowd in emergency conditions require modeling of panic aspects and social conventions of inter-relations. The present paper provides a description of the enhanced crowd modeling approach employed in VELOS for the performance of ship evacuation assessment and analysis based on the guidelines provided by IMO’s Circular MSC 1238/2007 [2].


Cellular Automaton International Maritime Organization Ship Motion Fire Dynamics Simulator Steering Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ginnis, A.A.I., Kostas, K.V., Politis, C.G., Kaklis, P.D.: VELOS: A VR platform for ship-evacuation analysis. CAD, Special Issue on Computer Aided Ship Design 42(11), 1045–1058 (2010)CrossRefGoogle Scholar
  2. 2.
    I.M.O.: Guidelines for evacuation analyses for new and existing passenger ships. Msc.1/circ, 1238 edn. (October 30, 2007)Google Scholar
  3. 3.
    Vanem, E., Skjong, R.: Designing for safety in passenger ships utilizing advanced evacuation analyses - A risk based approach. Safety Science 44, 11–35 (2006)CrossRefGoogle Scholar
  4. 4.
    Thalmann, D., Musse, S.: Crowd Simulation. Springer (2007)Google Scholar
  5. 5.
    Helbing, D., Farkas, I., Viscek, T.: Simulating dynamical feaatures of escape panic. Nature 407, 487–490 (2000)CrossRefGoogle Scholar
  6. 6.
    Henderson, L.: The statistics of crowd fluids. Nature 229, 381–383 (1971)CrossRefGoogle Scholar
  7. 7.
    Helbing, D., Molnar, P., Farkas, I., Bolay, K.: Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 28, 361–383 (2001)CrossRefGoogle Scholar
  8. 8.
    Hughes, R.: The flow of human crowds. Annual Review of Fluid Mechanics 224, 120–123 (1970)Google Scholar
  9. 9.
    Gardner, M.: Mathematical games: Conway’s game of life. Scientific American 407, 487–490 (2000)Google Scholar
  10. 10.
    Blue, V., Adler, J.: Cellular automata microsimulation of bi-directional pedestrian flows. Transportation Research Board 1678, 135–141 (2000)CrossRefGoogle Scholar
  11. 11.
    Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. Computer Graphics 21(4), 25–34 (1987)CrossRefGoogle Scholar
  12. 12.
    Reynolds, C.W.: Steering behaviors for autonomous characters. In: GDC 1999 (Game Developers Conference) (1999)Google Scholar
  13. 13.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)CrossRefGoogle Scholar
  14. 14.
    Green, R.: Steering behaviors. In: SIGGRAPH 2000 Conference Proceedings (2000)Google Scholar
  15. 15.
    I.M.O.: Interim Guidelines for evacuation analyses for new and existing passenger ships, MSC/Circ. 1033 (June 2002)Google Scholar
  16. 16.
    Bles, W., Nooy, S., Boer, L.: Influence of ship listing and ship motion on walking speed. In: Proceedings of Conference on Pedestrian and Evacuation Dynamics (2001)Google Scholar
  17. 17.
    Crossland, P.: The influence of ship motion induced lateral acceleration on walking speed. In: Proceedings of the 2nd International Conference on Pedestrian and Evacuation Dynamics, Greenwich (2003)Google Scholar
  18. 18.
    Baitis, A.E., Holcombe, F.D., Conwell, S.L., Crossland, P., Colwell, J., Pattison, J.H.: 1991-1992 motion induced interruptions (mii) and motion induced fatigue (mif) experiments at the naval biodynamics laboratory. Technical Report CRDKNSWC-HD-1423-01, Bethesda, MD: Naval Surface Warfare Center, Carderock Division (1995)Google Scholar
  19. 19.
    Graham, R.: Motion-induced interruptions as ship operability criteria. Journal of Naval Engineers 102(2), 65–71 (1990)CrossRefGoogle Scholar
  20. 20.
    Graham, R., Baitis, A.E., Meyers, W.: On the development of seakeeping criteria. Journal of Naval Engineers 104(3), 259–275 (1992)CrossRefGoogle Scholar
  21. 21.
    Kostas, K., Ginnis, A.I., Politis, C., Kaklis, P.: Use of VELOS platform for modelling and accessing crew assistance and passenger grouping in ship-evacuation analysis. In: Rizzuto, E., Guedes Soares, C. (eds.) Sustainable Maritime Transportation and Exploitation of Sea Resources, vol. 2, pp. 729–736 (2011)Google Scholar
  22. 22.
    Rein, G., Barllan, A., Fernandez-Pell, C., Alvares, N.: A comparison of three models for the simulation of accidental fires. Fire Protection Engineering 1, 183–209 (2006)CrossRefGoogle Scholar
  23. 23.
    McGrattan, K., Klein, B., Hostika, S.: Fire Dynamics Simulator. NIST. NIST Special Publication 1019-5, Maryland (2007)Google Scholar
  24. 24.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Konstantinos V. Kostas
    • 1
  • Alexandros-Alvertos Ginnis
    • 2
  • Constantinos G. Politis
    • 1
  • Panagiotis D. Kaklis
    • 2
    • 3
  1. 1.Dept. of Naval Architecture (NA)Technological Educational Institute of Athens (TEI-A)Greece
  2. 2.School of Naval Architecture & Marine Engineering (NAME)National Technical University of Athens (NTUA)Greece
  3. 3.Department of Naval Architecture, Ocean and Marine Engineering (NAOME)University of StrathclydeUK

Personalised recommendations