Advertisement

Attention Control and Eyesight Focus for Senior Citizens

  • Miikka Lääkkö
  • Aryan Firouzian
  • Jari Tervonen
  • Goshiro Yamamoto
  • Petri Pulli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8526)

Abstract

The population is aging fast and with aging come cognitive impairments that often require costly facility care. This paper proposes Smart Glasses that can help alleviate these impairments at their early stages and thus allow senior citizens stay away from facility care longer. The Smart Glasses produce exogenous cues to attract user attention. Four usability experiments are described to evaluate the utility of the cues and other usability factors of the proposed system. We expect the results will give us valuable information on how to improve the design of the system based on senior citizens’ needs.

Keywords

smart glasses aging in-place assistive technology attention control cognitive impairment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baddeley, A.D., Baddeley, H.A., Bucks, R.S., et al.: Attentional Control in Alzheimer’s Disease. Brain 124, 1492–1508 (2001)CrossRefGoogle Scholar
  2. 2.
    Bharucha, A.J., Anand, V., Forlizzi, J., et al.: Intelligent Assistive Technology Applications to Dementia Care: Current Capabilities, Limitations, and Future Challenges. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry 17, 88 (2009)CrossRefGoogle Scholar
  3. 3.
    Donahue, G.M., Weinschenk, S., Nowicki, J.: Usability is Good Business. Verfügbar unter (1999) (April 24, 2003), http://www.yucentrik.ca/usability.pdf
  4. 4.
    Ferri, C.P., Prince, M., Brayne, C., et al.: Global Prevalence of Dementia: A Delphi Consensus Study. The Lancet 366, 2112–2117 (2006)CrossRefGoogle Scholar
  5. 5.
    Hyry, J., Yamamoto, G., Pulli, P.: Requirements Guideline of Assistive Technology for People Suffering from Dementia, 39 (2011)Google Scholar
  6. 6.
    Jeng, J.: Usability Assessment of Academic Digital Libraries: Effectiveness, Efficiency, Satisfaction, and Learnability. Libri. 55, 96–121 (2005)CrossRefGoogle Scholar
  7. 7.
    Kangas, M., Konttila, A., Lindgren, P., et al.: Comparison of Low-Complexity Fall Detection Algorithms for Body Attached Accelerometers. Gait Posture 28, 285–291 (2008)CrossRefGoogle Scholar
  8. 8.
    Kangas, M., Vikman, I., Wiklander, J., et al.: Sensitivity and Specificity of Fall Detection in People Aged 40 Years and Over. Gait Posture 29, 571–574 (2009)CrossRefGoogle Scholar
  9. 9.
    Kretschmer, V., Griefahn, B., Schmidt, K.-H.: Bright Light and Night Work: Effects on Selective and Divided Attention in Elderly Persons. Light Res. Technol. 43, 473–486 (2011)CrossRefGoogle Scholar
  10. 10.
    Nielsen, J.: Usability Inspection Methods, 413-414 (1994)Google Scholar
  11. 11.
    Sauro, J., Kindlund, E.: A Method to Standardize Usability Metrics into a Single Score, 401-409 (2005)Google Scholar
  12. 12.
    Staub, B., Doignon-Camus, N., Després, O., et al.: Sustained Attention in the Elderly: What do we Know and what does it Tell Us about Cognitive Aging? Ageing Res. Rev. 12, 459–468 (2013)CrossRefGoogle Scholar
  13. 13.
    Tales, A., Muir, J.L., Bayer, A., et al.: Spatial Shifts in Visual Attention in Normal Ageing and Dementia of the Alzheimer Type. Neuropsychologia 40, 2000–2012 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Miikka Lääkkö
    • 1
  • Aryan Firouzian
    • 1
  • Jari Tervonen
    • 1
  • Goshiro Yamamoto
    • 2
  • Petri Pulli
    • 1
  1. 1.Department of Information Processing ScienceUniversity Of OuluOuluFinland
  2. 2.Nara Institute of Science and TechnologyNaraJapan

Personalised recommendations