Advertisement

Multi-users Real-Time Interaction with Bacterial Biofilm Images Using Augmented Reality

  • Mohammadreza Hosseini
  • Tomasz Bednarz
  • Arcot Sowmya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8526)

Abstract

Augmented Reality (AR) applications may be used to enhance understanding of physical objects by addition of digital information to captured video streams. We propose new bio-secure system for interactions with bacterium biofilm images using the AR technology to improve safety in experimental lab. In proposed application we used state-of-the-art real-time features detection and matching methods. Also, various methods of feature detection and matching were compared with each other for real-time interaction and accuracy. The implementation of an app on a tablet device (Apple iPad) makes it useable by multi users in parallel.

Keywords

Multi-user Real-time biofilm Augmented reality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hosseini, M., Vallotton, P., Bednarz, T., Sowmya, A.: A Study of Touchless Versus Touch-based Interactions with Bacterial Biofilm Images. In: 12th ACM International Conference on Virtual Reality Continuum and Its Applications in Industry (VRCAI 2013). The Chinese University of Hong Kong, Hong Kong (2013)Google Scholar
  2. 2.
    Vallotton, P., Sun, C., Wang, D., Ranganathan, P., Turnbull, L., Whitchurch, C.: Segmentation and tracking of individual Pseudomonas aeruginosa bacteria in dense populations of motile cells. In: Image and Vision Computing New Zealand (IVCNZ), Wellington, New Zealand (2009)Google Scholar
  3. 3.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Gundogdu, E., Alatan, A.A.: Feature detection and matching towards augmented reality applications on mobile devices. In: 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON) 2012, October 15-17, pp. 1,4 (2012)Google Scholar
  5. 5.
    Lowe, D.G.: Distinctive image features from scale-invariant key points. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference (1988)Google Scholar
  8. 8.
    Thomas, S.J., MacDonald, B.A., Stol, K.A.: Real-time robust image feature description and matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 334–345. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Rublee, R., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), p. 13 (2011)Google Scholar
  10. 10.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Tola, E., Lepetit, V., Fua, P.: A Fast Local Descriptor for Dense Matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  12. 12.
    Nielsen, F., Piro, P., Barlaud, M.: Bregman Vantage Point Trees for Efficient Nearest Neighbor Queries. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 878–881 (2009)Google Scholar
  13. 13.
    Kumar, N., Zhang, L., Nayar, S.: What Is a Good Nearest Neighbors Algorithm for Finding Similar Patches in Images? In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 364–378. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach. 24, 381–395 (1981)MathSciNetGoogle Scholar
  15. 15.
    Muja, M., Lowe, D.G.: FLANN – Fast Library for Approximate Nearest Neighbors, http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
  16. 16.
    Metaio Augmented Solutions, http://www.metaio.com
  17. 17.
    Qualcomm Vuforia, https://www.vuforia.com
  18. 18.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mohammadreza Hosseini
    • 1
  • Tomasz Bednarz
    • 2
  • Arcot Sowmya
    • 1
  1. 1.UNSWSydneyAustralia
  2. 2.CSIROBrisbaneAustralia

Personalised recommendations