Advertisement

Learning from Each Other: An Agent Based Approach

  • Goran Zaharija
  • Saša Mladenović
  • Andrina Granić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8514)

Abstract

This paper presents an agent based approach to knowledge representation and learning methods. Agent architecture is described and discussed, together with its advantages and limitations. Main purpose of the proposed approach is to gain further insight in current teaching methods with a foremost aspiration for their improvement. Two different experimental studies were conducted; the first one addressing knowledge representation and the second one regarding knowledge transfer between agents. Obtained results are presented and analysed.

Keywords

learning artificial intelligence machine learning agent based systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi, J., Oh, S., Horowitz, R.: Distributed learning and cooperative control for multi-agent systems. Automatica 45(12), 2802–2814 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Díez, F., Cobos, R.: A case study of a cooperative learning experiment in artificial intelligence. Computer Applications in Engineering Education 15(4), 308–316 (2007)CrossRefGoogle Scholar
  3. 3.
    Soh, L.K., Jiang, H., Ansorge, C.: Agent-based cooperative learning: a proof-of-concept experiment. ACM SIGCSE Bulletin 36(1), 368–372 (2004)CrossRefGoogle Scholar
  4. 4.
    Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(2), 156–172 (2008)CrossRefGoogle Scholar
  5. 5.
    Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, H., Swift, M., Taysom, W.: PLOW: A collaborative task learning agent. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22(2), p. 1514. AAAI Press, Menlo Park (2007)Google Scholar
  6. 6.
    Pederson, T., Janlert, L.E., Surie, D.: Towards a model for egocentric interaction with physical and virtual objects. In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, pp. 755–758. ACM (2010)Google Scholar
  7. 7.
    Wagner, T., Visser, U., Herzog, O.: Egocentric qualitative spatial knowledge representation for physical robots. Robotics and Autonomous Systems 49(1), 25–42 (2004)CrossRefGoogle Scholar
  8. 8.
    Johnson, D.W., Johnson, R.T.: Cooperative, Competitive, and Individualistic Learning Environments. In: Hattie, J., Anderman, E.M. (eds.) International Guide to Student Achievement, pp. 372–375. Taylor & Francis (2013)Google Scholar
  9. 9.
    Roschelle, J., Rosas, R., Nussbaum, M.: Towards a design framework for mobile computer-supported collaborative learning. In: Proceedings of the 2005 Conference on Computer Support for Collaborative Learning, pp. 520–524. International Society of the Learning Sciences (2005)Google Scholar
  10. 10.
    Stutts, M.A., West, V.: Competitive Learning: Beyond project based classes. Journal for the Advancement of Marketing Education 7, 55–62 (2005)Google Scholar
  11. 11.
    Rockwood, H.S., Rockwood III., H.S.: Cooperative and collaborative learning. The National Teaching & Learning Forum 4(6), 8–9 (1995a)Google Scholar
  12. 12.
    Franklin, S., Graesser, A.: Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents. In: Jennings, N.R., Wooldridge, M.J., Müller, J.P. (eds.) ECAI-WS 1996 and ATAL 1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Padgham, L., Winikoff, M.: Developing intelligent agent systems: A practical guide, vol. 13. John Wiley & Sons (2005)Google Scholar
  14. 14.
    de Bruijn, J., Ehrig, M., Feier, C., Martín-Recuerda, F., Scharffe, F., Weiten, M.: Ontology mediation, merging and aligning. In: Davies, J., Studer, R., Warren, P. (eds.) Semantic Web Tenologies: Trends and Research in Ontology-Based System, John Wiley, West Sussex (2006)Google Scholar
  15. 15.
    IEEE and I. O. E. &. E. Engineers, In: IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries: 610. Inst. of Elect & Electronic (1991)Google Scholar
  16. 16.
    E. IDABC, European Interoperability Framework for Pan-European E-Government Services. Office for Official Publications of the European Communities, Luxembourg (2004) Google Scholar
  17. 17.
    F. Standard, “Department of Defense Dictionary of Military and Associated Terms in support of MIL-STD-188,” 1037CGoogle Scholar
  18. 18.
    The Open group, TOGAF Version 9. Van Haren Publishing, (2009)Google Scholar
  19. 19.
    Kubicek, H., Cimander, R.: Three dimensions of organizational interoperability. European Journal of ePractice 6 (2009)Google Scholar
  20. 20.
    Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999), http://ccl.northwestern.edu/netlogo/
  21. 21.
    Mladenović, S., Granić, A., Zaharija, G.: An approach to universal interaction on the case of knowledge transfer. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2013, Part II. LNCS, vol. 8010, pp. 604–613. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Goran Zaharija
    • 1
  • Saša Mladenović
    • 1
  • Andrina Granić
    • 1
  1. 1.Faculty of ScienceUniversity of SplitSplitCroatia

Personalised recommendations