Skip to main content

Correntropy with Nonnegative Constraint

  • Chapter
  • First Online:
Book cover Robust Recognition via Information Theoretic Learning

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 1011 Accesses

Abstract

Nonnegativity constraint is more consistent with the biological modeling of visual data and often leads to better performance for data representation and graph learning [66]. In this chapter, we present an overview of some recent advances in correntropy with nonnegative constraint. We begin with an introduction of an 1 regularized nonnegative sparse coding algorithm to learn a nonnegative sparse representation (NSR). Then we show how to use correntropy to learn a robust NSR. Finally, based on the divide and conquer strategy, a two-stage framework is discussed for large-scale sparse representation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since β is assumed to be sparse, LCP can be used to efficiently find a sparse active set.

  2. 2.

    According to Theorem 4.2, we can learn that p ≤ 0. By replacing the p with − p, we can get the equivalent minimal problem.

  3. 3.

    Code: http://www.openpr.org.cn/index.php/Download/.

  4. 4.

    Subspace U is composed of the eigenvectors computed by principal component analysis [49].

  5. 5.

    The active set algorithm [11, 49] to solve (6.4) selects the sample that can significantly reduce the objective step by step. The lastly selected samples often correspond to smallest coefficients and are far away from the query y.

  6. 6.

    The source code: http://www.acm.caltech.edu/l1magic/.

  7. 7.

    The source code: http://redwood.berkeley.edu/bruno/sparsenet/.

  8. 8.

    The source code: http://www.openpr.org.cn/index.php/All/63-Two-stage-Sparse-Representation/View-details.html.

  9. 9.

    The source code: http://www.openpr.org.cn/index.php/All/69-CESR/View-details.html.

  10. 10.

    The source code: http://www4.comp.polyu.edu.hk/~cslzhang.

References

  1. Bjorck, A.: A direct method for sparse least-squares problems with lower and upper bounds, numer. Math 54, 19–32 (1988)

    MathSciNet  Google Scholar 

  2. Black, M., Jepson, A.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision 26(1), 63–84 (1998)

    Article  Google Scholar 

  3. Bruckstein, A.M., Elad, M., Zibulevskyy, M.: On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Transactions on Information Theory 54(11), 4813–4820 (2008)

    Article  Google Scholar 

  4. Candés, E.J., Romberg, J.: l1-magic: recovery of sparse signals via convex programming. http://www.acm.caltech.edu/l1magic/ (2005)

  5. Donoho, D.L., Tanner, J.: Sparse nonnegative solutions of underdetermined linear equations by linear programming. In: Proceedings of the National Academy of Sciences, vol. 102, pp. 9446–9451 (2005)

    MathSciNet  Google Scholar 

  6. Fidler, S., Skocaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 337–350 (2006)

    Article  Google Scholar 

  7. Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The cas-peal large-scale Chinese face database and baseline evaluations. IEEE Transactions on System Man, and Cybernetics (Part A) 38(1), 149–161 (2008)

    Google Scholar 

  8. He, R., Hu, B.G., Yuan, X.: Robust discriminant analysis based on nonparametric maximum entropy. In: Asian Conference on Machine Learning (2009)

    Google Scholar 

  9. He, R., Hu, B.G., Zheng, W.S., Guo, Y.Q.: Two-stage sparse representation for robust recognition on large-scale database. In: AAAI Conference on Artificial Intelligence, pp. 475–480 (2010)

    Google Scholar 

  10. He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1561–1576 (2011)

    Article  Google Scholar 

  11. He, R., Zheng, W.S., Hu, B.G., Kong, X.W.: Nonnegative sparse coding for discriminative semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2849–2856 (2011)

    Google Scholar 

  12. He, R., Zheng, W.S., Hu, B.G., Kong, X.W.: Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Transactions on Neural Network and Learning System 34(1), 35–46 (2013)

    Google Scholar 

  13. Ji, Y., Lin, T., Zha, H.: Mahalanobis distance based non-negative sparse representation for face recognition. In: Proceedings of International Conference on Machine Learning and Applications, pp. 41–46 (2009)

    Google Scholar 

  14. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Proceedings of Neural Information Processing Systems, vol. 19, pp. 801–808 (2006)

    Google Scholar 

  15. Lei, Z., Chu, R., He, R., Liao, S., Li, S.Z.: Face recognition by discriminant analysis with Gabor tensor representation. In: Advances in Biometrics (2010)

    Google Scholar 

  16. Liu, R., Li, S.Z., Yuan, X., He, R.: Online determination of track loss using template inverse matching. In: International Workshop on Visual Surveillance-VS (2008)

    Google Scholar 

  17. Liu, W.F., Pokharel, P.P., Principe, J.C.: Correntropy: Properties and applications in non-gaussian signal processing. IEEE Transactions on Signal Processing 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  18. Martinez, A.M., Benavente, R.: The AR face database. Tech. rep., Computer Vision Center (1998)

    Google Scholar 

  19. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  20. Nikolova, M., NG, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM Journal on Scientific Computing 27(3), 937–966 (2005)

    Google Scholar 

  21. Portugal, L.F., Judice, J.J., Vicente, L.N.: A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables. Mathematics of Computation 63(208), 625–643 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Vo, N., Moran, B., Challa, S.: Nonnegative-least-square classifier for face recognition. In: Proceedings of International Symposium on Neural Networks:Advances in Neural Networks, pp. 449–456 (2009)

    Google Scholar 

  23. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  24. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning with application to clustering with side-information. In: Proceedings of Advances in Neural Information Processing Systems, vol. 15, pp. 505–512 (2002)

    Google Scholar 

  25. Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 625–632 (2011)

    Google Scholar 

  26. Yang, S., Zha, H., Zhou, S., Hu, B.G.: Variational graph embedding for globally and locally consistent feature extraction. In: Europe Conference on Machine Learning (ECML), pp. 538–553 (2009)

    Google Scholar 

  27. Yuan, X.T., Hu, B.G.: Robust feature extraction via information theoretic learning. In: Proceedings of International Conference on Machine Learning, pp. 1193–1200 (2009)

    Google Scholar 

  28. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: Proceedings of IEEE International Conference on Computer Vision (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

He, R., Hu, B., Yuan, X., Wang, L. (2014). Correntropy with Nonnegative Constraint. In: Robust Recognition via Information Theoretic Learning. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-07416-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07416-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07415-3

  • Online ISBN: 978-3-319-07416-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics