Advertisement

1 Regularized Correntropy

Chapter
  • 963 Downloads
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Sparse signal representation arises in application of compressed sensing and has been considered as a significant technique in computer vision and machine learning [27, 65, 154]. Based on the 0- 1 equivalence theory [18, 39], the solution of an 0-minimization problem is equal to that of an 1 minimization problem under certain conditions.

Keywords

Sparse Representation Sparse Signal Multiplicative Form Adaptive Lasso Corrupted Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.M.: The k-svd: An algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  2. 5.
    Bajwa, W., Haupt, J., Sayeed, A., Nowak, R.: Compressive wireless sensing. In: Proceedings of International Conference on Information Processing in Sensor Networks (2006)Google Scholar
  3. 6.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 17.
    Candés, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Math 59(8), 1207–1223 (2006)CrossRefzbMATHGoogle Scholar
  5. 18.
    Candés, E.J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)CrossRefGoogle Scholar
  6. 19.
    Candés, E.J., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted 1 minimization. Journal of Fourier Analysis and Applications 14(5), 877–905 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 23.
    Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14(10), 707–710 (2007)CrossRefGoogle Scholar
  8. 24.
    Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872 (2008)Google Scholar
  9. 25.
    Chen, S., Donoho, D.L., Saunders, M.: Atomic decomposition by basis pursuit. SIAM Review 43(1), 129–159 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 27.
    Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.S.: Learning with 1-graph for image analysis. IEEE Transactions on Image Processing 4, 858–866 (2010)CrossRefMathSciNetGoogle Scholar
  11. 29.
    Combettes, P.L., Pesquet, J.C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM Journal on Optimization 18(4), 1531–1376 (2007)MathSciNetGoogle Scholar
  12. 30.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward backward splitting. SIAM Journal on Multiscale Modeling & Simulation 4(5), 1168–1200 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 33.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications in Pure and Applied Mathematics 57, 1413–1457 (2006)CrossRefGoogle Scholar
  14. 34.
    Daubechies, I., DeVore, R., Fornasier, M., Gunturk, C.: Iteratively re-weighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics 63(1), 1–38 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 35.
    Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Journal of Constructive Approximation 13, 57–98 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 37.
    De la Torre, F., Black, M.: A framework for robust subspace learning. International Journal of Computer Vision 54(1–3), 117–142 (2003)CrossRefzbMATHGoogle Scholar
  17. 39.
    Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 40.
    Donoho, D.L., Stodden, V.: Breakdown point of model selection when the number of variables exceeds the number of observations. In: Proceedings of the International Joint Conference on Neural Networks, pp. 16–21 (2006)Google Scholar
  19. 42.
    Donoho, D.L., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philosophical Transactions of The Royal Society A 367(1906), 4273–4293 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 43.
    Donoho, D.L., Tsaig, Y.: Fast solution of l 1-norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory 54(11), 4789–4812 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 46.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on 35(11), 2765–2781 (2013)CrossRefGoogle Scholar
  22. 49.
    Fidler, S., Skocaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 337–350 (2006)CrossRefGoogle Scholar
  23. 50.
    Figueiredo, M., Nowak, R., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing 1(4), 586–597 (2007)CrossRefGoogle Scholar
  24. 52.
    Fornasier, M.: Theoretical foundations and numerical methods for sparse recovery. Radon Series on Computational and Applied Mathematics 9, 1–121 (2010)Google Scholar
  25. 65.
    He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1561–1576 (2011)CrossRefGoogle Scholar
  26. 67.
    He, R., Zheng, W.S., Hu, B.G., Kong, X.W.: A regularized correntropy framework for robust pattern recognition. Neural Computation 23(8), 2074–2100 (2011)CrossRefzbMATHGoogle Scholar
  27. 69.
    He, R., Zheng, W.S., Tan, T., Sun, Z.: Half-quadratic based iterative minimization for robust sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(2), 261–275 (2014)CrossRefGoogle Scholar
  28. 80.
    Idier, J.: Convex half-quadratic criteria and interacting auxiliary variables for image restoration. IEEE Transactions on Image Processing 10(7), 1001–1009 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 86.
    Jia, H., Martinez, A.M.: Support vector machines in face recognition with occlusions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–141 (2009)Google Scholar
  30. 89.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Proceedings of Neural Information Processing Systems, vol. 19, pp. 801–808 (2006)Google Scholar
  31. 96.
    Li, X.X., Dai, D.Q., Zhang, X.F., Ren, C.X.: Structured sparse error coding for face recognition with occlusion. IEEE Transactions on Image Processing 22(5), 1889–1900 (2013)CrossRefMathSciNetGoogle Scholar
  32. 99.
    Liu, W.F., Pokharel, P.P., Principe, J.C.: Correntropy: Properties and applications in non-gaussian signal processing. IEEE Transactions on Signal Processing 55(11), 5286–5298 (2007)CrossRefMathSciNetGoogle Scholar
  33. 102.
    Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Modeling & Simulation 7(1), 214–241 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 109.
    Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), 2106–2112 (2010)CrossRefGoogle Scholar
  35. 112.
    Nikolova, M., NG, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM Journal on Scientific Computing 27(3), 937–966 (2005)Google Scholar
  36. 116.
    Nowak, R., Figueiredo, M.: Fast wavelet-based image deconvolution using the EM algorithm. In: Proceedings of Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp. 371–375 (2001)Google Scholar
  37. 121.
    Plumbley, M.: Recovery of sparse representations by polytope faces pursuit. In: Proceedings of International Conference on Independent Component Analysis and Blind Source Separation, pp. 206–213 (2006)Google Scholar
  38. 136.
    Seth, S., Principe, J.C.: Compressed signal reconstruction using the correntropy induced metric. In: Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing, pp. 3845–3848 (2008)Google Scholar
  39. 143.
    Takhar, D., Laska, J., Wakin, M., Duarte, M., Baron, D., Sarvotham, S., Kelly, K., , Baraniuk, R.: A new compressive imaging camera architecture using optical-domain compression. In: Proceedings of Computational Imaging IV at SPIE Electronic Imaging, pp. 43–52 (2006)Google Scholar
  40. 150.
    Wakin, M., Laska, J., Duarte, M., Baron, D., Sarvotham, S., Takhar, D., Kelly, K., Baraniuk, R.: An architecture for compressive image. In: Proceedings of International Conference on Image Processing, pp. 1273–1276 (2006)Google Scholar
  41. 153.
    Wright, J., Ma, Y.: Dense error correction via 1-minimization. IEEE Transactions on Information Theory 56(7), 3540–3560 (2010)CrossRefMathSciNetGoogle Scholar
  42. 154.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proceedings of IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  43. 155.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)CrossRefGoogle Scholar
  44. 156.
    Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. In: Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing (2008)Google Scholar
  45. 161.
    Yang, A.Y., Sastry, S.S., Ganesh, A., Ma, Y.: Fast 1-minimization algorithms and an application in robust face recognition: A review. In: Proceedings of International Conference on Image Processing (2010)Google Scholar
  46. 162.
    Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 625–632 (2011)Google Scholar
  47. 164.
    Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for 1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences 1(1), 143–168 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 167.
    Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: Proceedings of IEEE International Conference on Computer Vision (2011)Google Scholar
  49. 168.
    Zhang, T.: Multi-stage convex relaxation for learning with sparse regularization. In: Proceedings of Neural Information Processing Systems, pp. 16–21 (2008)Google Scholar
  50. 172.
    Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Image and Vision Computing 15(1), 59–76 (1997)CrossRefGoogle Scholar
  51. 173.
    Zou, H.: The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101(476), 1418–1429 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.National Laboratory of Pattern RecognitionInstitute of Automation Chinese Academy of SciencesBeijingChina
  2. 2.School of Information and ControlNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations